
NaCl’s crypto box in hardware

Michael Hutter, Jürgen Schilling, Peter Schwabe, and Wolfgang Wieser

Cryptography Research, TU Graz (IAIK), Radboud University Nijmegen

September 14, 2015

CHES 2015, Saint-Malo, France



NaCl and crypto box

I Networking and Cryptography library - NaCl

I Easy-to-use and fast

I crypto box offers public-key authenticated encryption
I X25519 Diffie-Hellman key exchange (using Curve25519),
I Salsa20 stream cipher, and
I Poly1305 message-authentication code.

I Allows fast and secure end-to-end communication via the Internet

I 128-bit security

I See also http://nacl.cr.yp.to

2

http://nacl.cr.yp.to


NaCl and crypto box

I Networking and Cryptography library - NaCl

I Easy-to-use and fast

I crypto box offers public-key authenticated encryption
I X25519 Diffie-Hellman key exchange (using Curve25519),
I Salsa20 stream cipher, and
I Poly1305 message-authentication code.

I Allows fast and secure end-to-end communication via the Internet

I 128-bit security

I See also http://nacl.cr.yp.to

2

http://nacl.cr.yp.to


NaCl and crypto box

I Networking and Cryptography library - NaCl

I Easy-to-use and fast

I crypto box offers public-key authenticated encryption
I X25519 Diffie-Hellman key exchange (using Curve25519),
I Salsa20 stream cipher, and
I Poly1305 message-authentication code.

I Allows fast and secure end-to-end communication via the Internet

I 128-bit security

I See also http://nacl.cr.yp.to

2

http://nacl.cr.yp.to


...but how does it perform in hardware?

I crypto box suitable for IoT?

I Wireless Identification and Sensing Platforms (WISPs)

I So why not using SSL or IPSec?
I Proposal from Gross et al. [1] at last

year’s RFIDsec
I Chosen set of IPSec primitives:

AES-128 and ECDH using NIST
P-192

I Still may require too much resources
(52 kGEs)...

. . . can we do better?

3



...but how does it perform in hardware?

I crypto box suitable for IoT?

I Wireless Identification and Sensing Platforms (WISPs)

I So why not using SSL or IPSec?
I Proposal from Gross et al. [1] at last

year’s RFIDsec
I Chosen set of IPSec primitives:

AES-128 and ECDH using NIST
P-192

I Still may require too much resources
(52 kGEs)...

. . . can we do better?

3



...but how does it perform in hardware?

I crypto box suitable for IoT?

I Wireless Identification and Sensing Platforms (WISPs)

I So why not using SSL or IPSec?
I Proposal from Gross et al. [1] at last

year’s RFIDsec
I Chosen set of IPSec primitives:

AES-128 and ECDH using NIST
P-192

I Still may require too much resources
(52 kGEs)...

. . . can we do better?

3



...but how does it perform in hardware?

I crypto box suitable for IoT?

I Wireless Identification and Sensing Platforms (WISPs)

I So why not using SSL or IPSec?
I Proposal from Gross et al. [1] at last

year’s RFIDsec
I Chosen set of IPSec primitives:

AES-128 and ECDH using NIST
P-192

I Still may require too much resources
(52 kGEs)...

. . . can we do better?

3



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



What we did...

I We present a carefully optimized hardware architecture of the basic
primitives of NaCl

I 128-bit public-key authenticated encryption

I Compatibility with existing NaCl interfaces

I No need for signatures

I Low power, not low energy

I Constant-runtime implementation

4



Hardware architecture overview

Controller

Prog.
ROM

Address
Logic

Instr.
Decoder

AMBA Interface Memory

RAM ROM

ALU

Accu

Buffer

I/O
32 32

32

99

I 32-bit architecture with single-port memory

I ASIP tailored for crypto box using microcode-control
I Self-written ”compiler” (written in Java) that generates machinecode
I Automatically outputs RTL of the program ROM (ready to integrate)
I Easy to use and to add functionality

5



Hardware architecture overview

Controller

Prog.
ROM

Address
Logic

Instr.
Decoder

AMBA Interface Memory

RAM ROM

ALU

Accu

Buffer

I/O
32 32

32

99

I 32-bit architecture with single-port memory

I ASIP tailored for crypto box using microcode-control
I Self-written ”compiler” (written in Java) that generates machinecode
I Automatically outputs RTL of the program ROM (ready to integrate)
I Easy to use and to add functionality

5



The controller

+

Reg Reg

ROM

PROM0

addr out

PROM1

addr out

Reg
Instruction
Decoder

Multiplication
Controller

Reg

+
bsr

Reg
+

Reg

start

SP

clk

addr

ctrl

I 2 microcode program ROMs: Curve25519 and Salsa20/Poly1305
I Splitting allows isolating ROMs to reduce power consumption
I Area reduction if microcodes have different opcode lengths

I Support for single-level subroutines
I 11-bit register stores return address, program counter update
I Subroutine addressing: decoder using a look-up table (ROM)

I 256-bit multiplication controller (optional)

6



The controller

+

Reg Reg

ROM

PROM0

addr out

PROM1

addr out

Reg
Instruction
Decoder

Multiplication
Controller

Reg

+
bsr

Reg
+

Reg

start

SP

clk

addr

ctrl

I 2 microcode program ROMs: Curve25519 and Salsa20/Poly1305
I Splitting allows isolating ROMs to reduce power consumption
I Area reduction if microcodes have different opcode lengths

I Support for single-level subroutines
I 11-bit register stores return address, program counter update
I Subroutine addressing: decoder using a look-up table (ROM)

I 256-bit multiplication controller (optional)

6



The controller

+

Reg Reg

ROM

PROM0

addr out

PROM1

addr out

Reg
Instruction
Decoder

Multiplication
Controller

Reg

+
bsr

Reg
+

Reg

start

SP

clk

addr

ctrl

I 2 microcode program ROMs: Curve25519 and Salsa20/Poly1305
I Splitting allows isolating ROMs to reduce power consumption
I Area reduction if microcodes have different opcode lengths

I Support for single-level subroutines
I 11-bit register stores return address, program counter update
I Subroutine addressing: decoder using a look-up table (ROM)

I 256-bit multiplication controller (optional)
6



2-column product-scanning multiply control

A[5]B[5] A[0]B[0]

C[0]C[5]C[10]

A[5]B[0]

A[0]B[5]

A[5]B[5] A[0]B[0]

C[0]C[5]C[10]

A[5]B[0]

A[0]B[5]

I We implemented product-scanning multiplication and process two
columns in parallel

I Column-wise product-scanning multiplication (left)
I 2-column parallel product-scanning multiplication (right).

I Allows to hold one operand in a register while next operand is
pre-fetched from memory

7



Memory paging

I Most of the time, crypto box primitives require access to a limited
number of RAM locations only

I Reduce length of address bits in opcode
I Divide memory into virtual memory pages
I One memory page consists of 4× 256 bits of RAM

I Special instructions:
I Memory Page Select (MPS)
I Memory Page Increment (MPI)
I Memory Page Decrement (MPD)

I Savings
I Only 5 opcode bits are required
I 2 bits to address a single 256-bit row of the currently selected page
I 3 bits to address a single 32-bit word

8



ALU

Buf.

4

32 32

0
+ 32 32

+ 32 32
+

67

0

0
MOL

Accu

rotate0
...

rotaten

SB

data in
en reg

mult counter
en adder

sel en mode
sel en0

en accu

en carry
sel carry

sel rotation
sel add mode

clk

clk

clk

out

I 32-bit digit-serial multiplier
I Parameterizable digit width w = 2, 4, 8, 12, 16 bits
I Also re-used for addition and subtraction

I Pre-fetch buffer used to store one 32-bit operand
I 32-bit logic operations: AND, OR, XOR
I 99-bit accumulator register with rotation unit

9



Crypto services

1. X25519 Diffie-Hellman key agreement

2. Authenticated encryption using a streaming API
I Message is processed in chunks of 64 bytes
I Support for authenticated decryption of a 32-byte message

Command Hex Description

DH-1 0x00 X25519 Diffie-Hellman key exchange: computes public key

DH-2 0x01 X25519 Diffie-Hellman key exchange: computes session key

INIT 0x02 HSalsa20: computes extended session key

FIRST 0x03 XSalsa20: computes first cipher block

UPDATE 0x04 XSalsa20: computes next cipher block

FINALIZE 0x05 Poly1305: computes authentication tag

DECRYPT 0x06 XSalsa20/Poly1305: decrypts and authenticates a single block

10



Subroutines

I Addition, subtraction, and multiplication

I Modular reduction in F2255−19 (iterative approach)

I Modular inversion based on Fermat’s little theorem (11M + 254S)

ECC scalar multiplication:

I Differential addition-and-doubling using Montgomery ladder

I Costs: 5M + 4S + 8add + 1Ma24

I 6 working registers (plus the register to store the base point xD)

I Variable a24 = (a+ 2)/4 is stored in ROM

11



Subroutines

I Addition, subtraction, and multiplication

I Modular reduction in F2255−19 (iterative approach)

I Modular inversion based on Fermat’s little theorem (11M + 254S)

ECC scalar multiplication:

I Differential addition-and-doubling using Montgomery ladder

I Costs: 5M + 4S + 8add + 1Ma24

I 6 working registers (plus the register to store the base point xD)

I Variable a24 = (a+ 2)/4 is stored in ROM

11



Tools and macros

I Cadence Encounter RTL Compiler v08.10

I UMC 130nm LL logic CMOS process (1 GE equals 5.12 µm2)

I Target frequency set to 1 MHz

I Results are for post-synthesis not considering overhead of P&R

I Cadence Encounter Power System v08.10 used for power estimations
after P&R

I We used a synchronous 2 304-bit RAM block implemented as either
I standard-cell based RAM (∼18.3 kGEs) or
I register-file RAM macro (∼3.7 kGEs).

12



Performance of crypto box

w
Speed [Cycles] Area [GEs]

Ctrl
ROM

Total incl. RAM
DH-1 DH-2 FIRST UPDATE DECRYPT +ALU std-cells macro

2 3 455 394 3 455 428 8 117 9 291 9 085 10 555 307 29 319 14 648
4 1 957 282 1 957 316 7 705 8 465 8 049 10 761 308 29 526 14 855
8 1 151 906 1 151 940 7 685 8 427 7 513 11 484 311 30 252 15 581
12 971 682 971 716 7 557 8 171 7 385 11 794 313 30 564 15 893
16 811 170 811 184 7 443 7 943 7 271 13 869 311 32 637 17 966

I INIT takes 6 641 cycles and FINALIZE needs 62 cycles for all
multiplier digit-sizes w.

I Controller (incl. program ROMs) requires 6.3-6.9 kGEs

I Power: 40-70 µW (half of power is spent for RAM)

I Critical path: 53.4-82.6 ns (adder structure in multiplier)

13



Comparison with Related Work

Features of the Size Time Area [GEs]
(Co-)processor [bits] [Cycles] std-cells macro

Wolkerstorfer [7] Weierstraß Fp/F2m 256 1 175 451 37 200 n.a.
Lai et al. [3] Weierstraß Fp/F2m 256 252 067 197 028 n.a.
Satoh et al. [5] Weierstraß Fp/F2m 256 880 000 55 647 n.a.

Liu et al. [4]
Twisted Edwards

207 182 653 n.a.a n.a.Fp = 2207 − 5131

Hutter et al. [2]
NIST P192,

192 753 393 n.a. 21 502
AES, SHA1

Wenger [6] NIST P256 256 3 367 000 n.a. 27 244
Ours (smallest) Curve25519,

255
3 455 394 29 319 14 648

Ours (fastest) Salsa20, Poly1305 811 170 32 637 17 966

aAuthors reported 5 821 GEs for the size of their ALU. Memory is not included.

14



Curve25519 vs. NIST P-256 vs. Brainpool P256r1

I Area and power values do not include RAM

15



Curve25519 vs. NIST P-256 vs. Brainpool P256r1

I Area and power values do not include RAM

15



More online...

I Hardware implementation:
http://mhutter.org/research/vlsi/#naclhw or
http://cryptojedi.org/crypto/#naclhw.

I NaCl website: http://nacl.cr.yp.to

I NaCl for microcontrollers (AVR, MSP430, ARM):
http://munacl.cryptojedi.org

16

http://mhutter.org/research/vlsi/#naclhw
http://cryptojedi.org/crypto/#naclhw
http://nacl.cr.yp.to
http://munacl.cryptojedi.org


References I

H. Groß, E. Wenger, H. M. Gonzalez, and M. Hutter.

PIONEER—a Prototype for the Internet of Things based on an Extendable EPC
Gen2 RFID Tag.

In N. Saxena and A.-R. Sadeghi, editors, Workshop on RFID Security - RFIDsec
2014, 10th Workshop, Oxford, UK, July 21 -23., LNCS. Springer, Heidelberg,
2014.

M. Hutter, M. Feldhofer, and J. Wolkerstorfer.

A cryptographic processor for low-resource devices: Canning ECDSA and AES
like sardines.

In C. A. Ardagna and J. Zhou, editors, Information Security Theory and Practice.
Security and Privacy of Mobile Devices in Wireless Communication, volume 6633
of LNCS, pages 144–159. Springer, 2011.

http://mhutter.org/papers/Hutter2011ACryptographicProcessor.pdf.

J.-Y. Lai and C.-T. Huang.

A highly efficient cipher processor for dual-field elliptic curve cryptography.

IEEE Transactions on Circuits and Systems II: Express Briefs, 56(5):394–398,
2009.

17

http://mhutter.org/papers/Hutter2011ACryptographicProcessor.pdf


References II
Z. Liu, H. Wang, J. Großschädl, Z. Hu, and I. Verbauwhede.

VLSI implementation of double-base scalar multiplication on a twisted edwards
curve with an efficiently computable endomorphism.

Cryptology ePrint Archive: Report 2015/421, 2015.

http://eprint.iacr.org/2015/421.pdf.

A. Satoh and K. Takano.

A scalable dual-field elliptic curve cryptographic processor.

IEEE Transactions on Computers, 52(4):449–460, 2003.

E. Wenger.

A lightweight ATmega-based application-specific instruction-set processor for
elliptic curve cryptography.

In G. Avoine and O. Kara, editors, LightSec 2013, volume 8162 of LNCS, pages
1–15. Springer, 2013.

https:

//online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=70640.

J. Wolkerstorfer.

Is elliptic-curve cryptography suitable for small devices?

In E. Oswald, editor, Workshop on RFID and Lightweight Crypto – RFIDsec
2005, 2005.

18

http://eprint.iacr.org/2015/421.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=70640
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=70640


The instruction set

I Special-purpose instruction
set with 46 instructions

I Opcode of all instructions has
9 bits only

I 26 general purpose
instructions

I 20 special crypto box

instructions
I 6 program-flow instructions

Mnemonic Description

NOP No operation.
FLC Fetch word depending on loop counter LC

LD Load from memory
CLR Clear ACCU
CLRL Clear ACCUL
LDC Load constant from ROM
ST Store to memory
STR Rotate and store to memory
MULADD Multiply-add without carry
MULADC Multiply-add with carry
MULSUB Multiply-subtract without carry
MULSBC Multiply-subtract with carry
MULACC Multiply-accumulate
MUL Accumulative multiplication
MUL256 256-bit multiplication
AND Logical AND
OR Logical OR
EOR Logical XOR
STC Store carry bit
STI Store carry bit inverted
STX Update carry bit
RORX 4 rotate right instructions
ROLX 7 rotate left instructions
JMP Jump to address
RET Subroutine return
SLCI Skip if PBLC = s, increment LC

SLCD Skip if PBLC = s, decrement LC

SFID Skip if FID = f
INCLC Increment LC

DECLC Decrement LC

SW0 Set memory-paging state to 0
SW1 Set memory-paging state to 1
SWLC Update memory-paging state
MPS Select memory page
MPI Increment memory-page index
MPD Decrement memory-page index
HLT Halt execution

19



Speed-Area Trade-Offs

I One can trade speed for lower area: implement 256-bit finite-field
multiplication in microcode instead of a dedicated multiply control

I Classical product-scanning multiplication requires 209 instructions
(for w = 2)

I Total area reduced to 13.2 kGEs

I Run-time for DH-1 is increased by 10.3 % to 3.8 MCycles

I Authenticated encryption needs 12.3-19.7 % longer for a single
64-byte message block

20



The memory

4

3

≥
SIZE
RAM

0 >
1

<
6

3

≥
SIZE
ROM

0

−
ROM

OFFSET

3

4

SB

Reg

<
ROM

OFFSET Reg

RAMin
en
addr

out

ROM

addr
out

address[6 : 0]

swap in
swap en

rom mode
clk

wr en
data in[31 : 0]

data out[31 : 0]

I RAM and ROM are logically divided into 256-bit memory pages
I RAM: 1× 256 bits for x-coordinate of base point, 1× 256 bits for the

X25519 private key, and 7× 256 bits for ECC scalar multiplication
I ROM: 6× 256 bits for constants: modular reduction in F2255−19 and

F2130−5, 2 logic masks, curve parameter a24, and σ for XSalsa20

21


