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Abstract. In this paper, we answer the question whether binary exten-
sion field or prime-field based processors doing multi-precision arithmetic
are better in the terms of area, speed, power, and energy. This is done
by implementing and optimizing two distinct custom-made 16-bit proces-
sor designs and comparing our solutions on different abstraction levels:
finite-field arithmetic, elliptic-curve operations, and on protocol level by
implementing the Elliptic Curve Digital Signature Algorithm (ECDSA).
On the one hand, our F2m based processor outperforms the Fp based pro-
cessor by 19.7 % in area, 69.6 % in runtime, 15.9 % in power, and 74.4 %
in energy when performing a point multiplication. On the other hand,
our Fp based processor (11.6 kGE, 41.4µW, 1,313 kCycles, and 54.3µJ)
improves the state-of-the-art in Fp192 ECC hardware implementations
regarding area, power, and energy results. After extending the designs
for ECDSA (signature generation and verification), the area and power-
consumption advantages of the F2m based processor vanish, but it still
is 1.5-2.8 times better in terms of energy and runtime.

Keywords: Hardware Implementation, Elliptic Curve Cryptography,
ECC, ECDSA, Binary-Extension Field, Prime Field.

1 Introduction

Elliptic Curve Cryptography (ECC) has been introduced in the 1980s and is used
nowadays in a variety of different applications. Every application has its own de-
sign criteria and raises special requirements for hardware designs. While contact-
less powered devices have to meet low-power constraints, battery-powered de-
vices need energy-aware implementations that consume as little energy as pos-
sible to increase the life-time of the battery.

The most fundamental decision concerning future hardware designs is whether
to use a binary-extension field or a prime field as basis of the used elliptic curve.
Most related work in dedicated hardware designs has been done in implement-
ing ECC over binary fields using full-precision arithmetic. Only a few papers
compared binary and prime fields in hardware. Wolkerstorfer [36] and Satoh [32]
used full-precision dual-field hardware with bit-serial multipliers. We however
are interested in multi-precision designs, where the big integers are split and
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processed in small words. This design methodology has the advantage that the
Central Processing Unit (CPU) can be reused to perform other work (e.g. pro-
tocol handling). In this paper we want to answer the following questions:

– What are the advantages and disadvantages of prime and binary-field pro-
cessors in custom multi-precision hardware?

– How big are the differences when identical design methodologies and elliptic
curves with similar security level are used?

– How does the performance of prime and binary-field processors scale in
higher-level protocols?

– Does the speed advantage of carry-less operations makes up the additional
need of prime-field arithmetics?

In this paper, we answer these questions by presenting two distinct custom
16-bit processors that leverage binary-field operations and prime-field operations
and are based on [35] and [34]. Using a metric consisting of area, speed, power,
and energy, we not only compare both designs in terms of finite-field operation
and ECC point-multiplication performance, we also investigate a higher-level
protocol. When performing an ECC-point-multiplication, the F2m based proces-
sor (9.3 kGE, 34.8µW, 400 kCycles, and 13.9µJ) is 3.3 times faster, 20 % smaller,
uses 16 % less power, and needs 3.9 times less energy compared to the Fp based
processor (11.6 kGE, 41.4µW, 1,313 kCycles, and 54.3µJ). Nevertheless our Fp

based processor improves the state-of-the-art in area, power, and energy results
for prime-field based ECC (doing point multiplication).

We further present two full hardware implementations of the Elliptic Curve
Digital Signature Algorithm (ECDSA). It shows that the F2m based processor
does not outperform the Fp based processor in every category of the metric. The
F2m based processor is 4.4-5.5 % larger, needs up to 6.3 % more power, but still
is 2.8 times faster and needs 2.8 times less energy when calculating a signature.
The runtime and energy advantage drops down to a factor of 1.5 when the
verification is done.

The paper is organized as follows. Section 2 discusses related work on ECC im-
plementations. Section 3 gives an introduction to elliptic curve cryptography and
introduces a metric. Whereas Section 4 gives a comparison, Section 5 thoroughly
discusses all implementation results. Conclusions are given in Section 6.

2 Related Work on ECC-Hardware Implementations

There exist many hardware implementations of elliptic-curve cryptography. In
the following, we consider only lightweight implementations that address embed-
ded systems, wireless sensors, and contactless-powered applications. Most of the
given implementations are based on either binary field, prime field, or dual-field
arithmetic. A very tiny ECC processor over binary fields has been proposed by
Y. K. Lee et al. [24] in 2008. They based their design on a compact architecture
of a Modular Arithmetic Logic Unit (MALU) that has been first presented by
the work of L. Batina et al. [3] in 2006. The processor performs (full-precision)
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operations in F2163 and calculates a scalar multiplication between about 80 000
and 300 000 clock cycles (depending on the digit size of the hardware multi-
plier). The final architecture needs about 12-20 kGEs of area. Similar results
have been also reported by S. Kumar and C. Paar [23] who presented a generic
binary-field processor over F2113−193 . The run-time and area requirements of the
proposed processor is similar, needing between 170 000 and 560 000 clock cy-
cles and 10-19 kGEs. D. Hein et al. [14] reported a low-resource co-processor for
passive Radio Frequency Identification (RFID) applications. In contrast to the
previous work, they applied multi-precision arithmetic over F2163 . Their ECC de-
sign needs about 300 000 clock cycles for one scalar multiplication and consumes
about 11 kGEs of chip area. In view of power consumption, all described designs
need between 8 and 30µWs of power at 100 kHz and are thus well applicable to
the targeted applications.

Prime-field based processors have been reported by, for example, E. Öztürk
et al. [30] in 2004. They presented an ECC architecture over the prime field
F2(167+1)/3. Their design needs 545 440 clock cycles for one scalar multiplication
and requires about 30 kGEs of area. Similar results have also been reported by
F. Fürbass and J. Wolkerstorfer [10] in 2007. Their Fp192 processor needs 502 000
clock cycles and about 23 kGEs of area. Recently, M. Hutter et al. [15] presented
an ECC processor over the same prime field needing about 750 000 clock cycles
for a scalar multiplication and about 19 kGEs of area. E. Wenger et al. [34] re-
duced the area requirements even further to only about 12 kGEs but their design
needs about 1.4 million clock cycles. The power consumption of most of the re-
ported prime-field processors is about 20 to several hundred µWs of power at
100 kHz.

By the given related work, it seems that binary-field processors benefit from
a more efficient computation for application-specific hardware implementations.
However, it is impossible to make a fair comparison since the authors used differ-
ent design techniques, synthesis tools, bit/word sizes, and EC parameters. This
renders a comparison largely unfeasible. Nevertheless, there exist only a few
publications that reported dual-field processors for ECC that give detailed com-
parison results. A. Satoh and K. Takano [32] presented a processor over F2m and
Fp supporting 160 to 256 bits. They show that the binary-field operations can
be performed about six times faster than their prime-field opponents (1.21 ms
vs. 0.19 ms for a 160-bit scalar multiplication). Furthermore, the area require-
ments for the prime-field controller is 1.47 times larger than the binary-field
controller (6 606 GEs vs. 4 490 GEs for 8-bit word size and a 160-bit scalar).
J. Wolkerstorfer [36] also presented a dual-field processor that supports 190 to
256 bits. One of his outcomes has been that binary-field operations can be per-
formed about 1.58, 1.42, and 1.27 times faster than prime-field operations for
191/192, 233/224, and 283/256 bits respectively. However, he did not compare
the hardware requirements of both types of supported fields and reported only
the total area requirements of his processor which is between 24-31 kGEs.

In the following, we design both a binary and prime-field based ECC pro-
cessor in order to compare them in a fair environment. In contrast to existing
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work, we consider not only scalar multiplication but evaluate and compare the
performance also for higher-level protocols such as ECDSA. First of all, we give
a brief introduction into ECC and define a metric to compare different criteria
which is done in the next section.

3 Implementations of Elliptic-Curve Cryptography

Elliptic curves have been introduced by Koblitz [21] and Miller [27] in the 1980s
and they have been thoroughly analyzed by the community throughout the last
decades. They are based on the Weierstrass equation which can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

with ai=1,2,3,4,6, x, y ∈ K. K defines the finite field. A point P = (x, y) is a
valid point on the elliptic curve if it fulfills the Weierstrass equation, i.e. Equa-
tion (1). The basic operations performed on the elliptic curve are point addition
and point doubling. Using those operations, a point multiplication (often re-
ferred as scalar multiplication) Q = k×P can be calculated. The Elliptic Curve
Discrete Logarithm Problem (ECDLP) states that finding k is a mathematical
hard problem if the points P and Q are given. For a more detailed introduction
into elliptic curves and its properties we refer the reader to [7,4,12,22].

Protocols

Elliptic-Curve 

Operations

Finite-Field 

Arithmetic

Fig. 1. Hierarchy of ECC imple-
mentations

Figure 1 shows the hierarchy of ECC im-
plementations. All ECC operations are based
on finite-field arithmetics. Higher-level proto-
cols make use of the underlying ECC opera-
tions to provide various cryptographic services
such as authentication, data integrity, non-
repudiation, or confidentiality. Note that most
of these protocols (such as ECDSA) require
different operations over finite fields such as
prime-field addition or multiplication.

Among the most commonly used types of
finite fields are prime fields Fp and binary-
extension fields F2m . These types have dif-
ferent characteristics so that the Weierstrass
equation can be simplified and different for-
mulas for point addition and point doubling
can be derived. Due to the differences of those
fields, the performance of both software and hardware implementations can vary
significantly.

In this paper, we compare two ECC implementations that are based on F2191

and on Fp192
. Both implementations use multi-precision arithmetic that means

that all finite-field elements are split into smaller bit vectors of size W . Note
that the one-bit difference does not have an impact in a relative comparison
of ECC implementations since we use the same metric for both implementa-
tions. As elliptic curves, we decided to use the recommended NIST prime-field
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curve P-192 [29] and the ANSI X9.62 compliant binary-field curve B-191 [1], i.e.
c2tnb191v1. This is because we would like to compare curves with nearly iden-
tical bit sizes (191 vs. 192 bits). The one-bit difference between those two fields
can be considered as negligible.

Throughout the paper, we used the following notation. For prime fields with
modulo p, n = dlog2(p)e bits are required to represent a number. For binary
fields with f(z) = zm +r(z) denoting an irreducible binary polynomial of degree
m, a bit-vector with m entries can be used to represent any binary polynomial.
Consequently the number of needed words to represent a Fp number is N =
dn/W e and number of needed words to represent a F2m polynomial is M =
dm/W e.

3.1 Comparison Metric and Criteria

The efficiency of ECC-hardware implementations depends on different criteria.
In order to make a fair comparison, we introduce the following metric consisting
of four main attributes:

– The area requirement of a chip is important for any cost-sensitive applica-
tion. This is because the area largely determines the chip costs at fabrication.

– Embedded systems require low-power and
– low-energy designs. This is an important issue especially in battery-powered

environments.
– Speed of computation is important for many applications to be applicable

in practice. The most neutral unit for measurement is the number of cycles
it takes to perform a certain operation.

The maximum frequency that can be used to clock a design has a direct im-
pact on the resulting execution time (speed) of any algorithm. But the previously
mentioned applications heavily constrain the maximum frequency anyways, so
we do not include the frequency measure into our metric.

Because the energy W = Pt is defined as product of the electrical power P
and time t, its properties are not handled explicitly within Section 4.

4 Comparing ECC-Hardware Designs over F2m and Fp

In this section, we compare ECC hardware designs and the respective algorithms
over F2m and over Fp. We describe the differences of the finite-field operations,
the respective elliptic-curve group operations, and compare the hardware designs
of both types of fields regarding cryptographic protocols like ECDSA.

4.1 Finite-Field Arithmetics

Modular Addition and Subtraction. The most basic finite-field algorithms
are addition and subtraction. Algorithm 1 and Algorithm 2 show modular-addition
algorithms over Fp and F2m . The major difference of those algorithms is the carry
propagation ε. The polynomial addition is a simple XOR operation that does
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Algorithm 1 Prime-field addition

Require: Two integers a, b ∈ [0, p−1] and
modulus p.

Ensure: c = (a+ b) (mod p).
1: (ε, C[0])← A[0] +B[0].
2: for i from 1 to N − 1 do
3: (ε, C[i])← A[i] +B[i] + ε.
4: end for
5: if ε = 1 or c ≥ p then
6: (ε, C[0])← C[0]− P [0].
7: for i from 1 to N − 1 do
8: (ε, C[i])← C[i]− P [i]− ε.
9: end for

10: end if
11: Return(c).

Algorithm 2 Binary-field addition.

Require: Binary polynomials a(z), b(z)
with maximum degree m-1.

Ensure: c(z) = a(z) + b(z).
1: for i from 0 to M − 1 do
2: C[i]← A[i]⊕B[i].
3: end for
4: Return(c).

not incorporate a carry. A Fp addition, in contrast, needs up to three times more
operations: the actual addition, a comparison of the result c with the prime p,
and a modular reduction afterwards. By extending the range of the integers
a, b, c form [0, p − 1] to [0, 2N∗W − 1], the comparison operation (c ≥ p) can be
avoided, which reduces the total number of arithmetic operations by about a
third. Notice that for this partial reduction, all other operations handling a, b, c
must be prepared for their extended range. A modular subtraction works similar
as the modular addition.

Modular Multiplication. Modular multi-precision multiplications are usually
realized by following an operand-scanning or product-scanning multiplication
approach. A multiply-accumulate unit (cf. [11,14,15]) can be used to increase

HA FA FA HA

A3 B1 A2 B1 A1 B1 A0 B1

A0 B0A3 B0 A2 B0 A1 B0

FA FA FA HA

A3 B2 A2 B2 A1 B2 A0 B2

FA FA FA HA

A3 B3 A2 B3 A1 B3 A0 B3

R0R1R2R3R4R5R6R7

Fig. 2. 4-bit integer multiplier for Fp

A3 B1 A2 B1 A1 B1 A0 B1

A0 B0A3 B0 A2 B0 A1 B0

A3 B2 A2 B2 A1 B2 A0 B2

A3 B3 A2 B3 A1 B3 A0 B3

R0R1R2R3R4R5R6R7

0

Fig. 3. 4-bit carry-less multiplier for
F2m
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Fig. 4. Reduction using p = 2192 − 264 − 1 on the top. Reduction using f(z) =
z191 + z9 + 1 on the bottom. In both cases, the product must be shifted and
summed up

the efficiency of the product-scanning method. Such a multiply-accumulate unit
can be designed for Fp and F2m . Figures 2 and 3 show the internal structure
of 4-bit multipliers for integers and polynomials. The biggest advantage of the
carry-less multiplier for F2m are the shorter critical path and the smaller area
requirement (logical XOR cells are used instead of full-adder standard cells).
Thus the difference between a F2m and a Fp multiplication module can be up to
40 % in terms of area requirement. Also the power consumption for a multiplier
designed out of XORs instead of full-adders is lower. However the execution
times (in cycles) for an integer or binary-polynomial multiplication using the
product-scanning method are equivalent.

A finite-field multiplication always needs a reduction. There exist many ways
to realize modular reduction in hardware. One efficient way is to apply a (fast)
reduction method using special primes, so called Mersenne-like primes, which
are often used for recommended and standardized elliptic curves (e.g. the NIST
recommended curves [29]). Figure 4 shows how intermediate multiplication re-
sults can be reduced using this fast reduction method for primes and polynomials
over the curves NIST P-192: p = 2192 − 264 − 1 and ANSI X9.62 c2tnb191v1:
f(z) = z191 + z9 + 1. The reduction can be performed with only shifts and ad-
ditions. The for NIST P-192 necessary shift operations fit very well within the
addressing scheme of 8-bit, 16-bit or 32-bit architectures. The shift operations
required by c2tnb191v1 do not fulfill this property. However, in cases where the
shift operations are smaller than W , an additional hardcoded reduction logic
can be used. In terms of area this reduction logic is very cheap (about the size
of a F2m addition).

Modular Squaring. Modular squaring is equivalent to a modular multiplica-
tion with two identical operands. Thus, an explicit implementation is often not
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Fig. 5. Prime-field squaring operation.
The necessary intermediate multiplica-
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Fig. 6. Binary-field squaring operation.
The necessary intermediate multiplica-
tions are shaded

necessary, especially in implementations where low area is a stringent require-
ment. However, if implemented it improves the performance since it is typically
faster than modular multiplications [12].

During a prime-field squaring operation, the two intermediate products A[i]×
A[j] and A[j] × A[i], ∀i 6= j ∈ [0, N − 1], are identical. Figure 5 shows the
operands of a 6-word squaring operation where only the necessary operations
(multiplications) are shaded. Thus the squaring operation can be up to two
times faster than a multiplication.

Squarings over binary fields, as opposed, have the nice property that ai×aj +
aj×ai = 0, ∀i 6= j ∈ [0,m−1]. If a(z) = am−1z

m−1 + · · ·+a2z
2 +a1z+a0, then

a(z)2 = am−1z
2m−2+· · ·+a2z

4+a1z
2+a0. Thus, zero values are simply inserted

between two consecutive bits ai. Utilizing the binary multiplier from Figure 3,
only M multiplications A[i]×A[i] are required to perform a binary-field squaring
operation. As it can also be seen in Figure 6, the squaring operation is M times
faster than a binary field multiplication. It can be performed with a similar
runtime complexity as a modular addition.

In terms of runtime and lines-of-code a F2m squaring can be up to N2

2M times
faster than a Fp squaring.

Modular Inversion. What the inversion operations for prime and binary fields
have in common is the very slow execution time. There are two common inversion
methods. One is based on the extended euclidian algorithm and one is based on
Fermat’s little theorem (a = a2m

mod f(z) ∀a ∈ F2m). For this paper the Mont-
gomery inversion technique by Kalinski et al. [19] has been used for prime field
inversion operations. Using Fermat’s little theorem [17] for binary field inversions,
with a−1 ≡ a2m−2 mod f(z), a field inversion can be performed by using m− 1
squarings and several multiplications. In the case of c2tnb191v1 190 squarings
and 12 multiplications are necessary. Because of the fast squaring operations
within binary fields, the runtime of this method exceeds any euclidian-based al-
gorithm. [13] gives a comparison of different algorithms for an inversion within
the NIST B-163 field.



264 E. Wenger and M. Hutter

4.2 Elliptic-Curve Operations

The performance of EC-group operations over F2m and Fp differ significantly. We
used formulae that reflect the state of the art in efficient ECC implementations.
For binary-field arithmetic, we applied the formulae proposed by J. López and
R. Dahab [26]. Their formulae need six finite-field multiplications, five squarings,
and three additions per key bit. For prime-field arithmetic, we applied the recent
formulae of M. Hutter et al. [16] needing 12 multiplications, four squarings, and
16 additions (incl. subtractions). Both formulae have been applied within the
Montgomery powering ladder scalar multiplication [18]. By comparing the for-
mulae, it clearly shows that the binary formulae need 50 % less multiplications
than the formulae over prime-field arithmetic. This is one of the most advan-
tageous properties that encourages the use of F2m operations in ECC-hardware
implementations. Note that both formulae use projective coordinates that means
that no modular inversion is needed throughout the scalar multiplication1.

4.3 Cryptographic Protocols

After the basic elliptic-curve operation of a scalar multiplication, we compare
the performance of F2m and Fp processors in terms of higher-level protocols. In
particular, we implemented ECDSA [29] on both types of (binary and prime-field
based) processors. The main additional operations needed to support ECDSA is
the SHA-1 [28] algorithm2 to calculate the message digest of the message m and
some prime-field operations, i.e. modular addition, multiplication, and inversion
to calculate the digital signature (r, s) = (k× P, k−1(SHA-1(m) + rd)), where d
represents the used private key.

For a more efficient ECDSA-verify algorithm, we additionally implemented
a different methodology for calculating point multiplications. First, we applied
Shamir’s trick [31,8] to improve the performance of multiple point multiplication.
Second, we used different formulae to perform the verification using Jacobian-
projective coordinates [12] for the prime-field processor and López-Dahab coor-
dinates [12,25] for the binary-field processor.

5 Comparison Results

For a fair comparison of binary field and prime-field ECC implementations, it
is important to select a common controlling engine, common development tools,
the same process technology, and elliptic curves of nearly the same bit size.

As a controller, we decided to use our own 16-bit microcontroller called Nep-
tun [33,34,35] that is especially optimized for elliptic-curve cryptography. The
processor comes with twelve special-purpose registers and uses a Harvard archi-
tecture with separated program and data memory. The usually area consuming
data memory is made from a very area-efficient single-port RAM macro3. The

1 Inversion is only needed after the calculation of k × P to convert the projective
coordinates back to affine coordinates.

2 Included in the design. 16-bit CPU is used to calculate the hash.
3 All following area-related results would be different if latch or register-based RAM’s

are used.
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Table 1. Prime-field vs. binary-field operations of our ECC-hardware architec-
ture

Cycles Lines of Code Operations/key-bit
Fp192 F2191 Fp192 F2191 Fp192 [16] F2191 [26]

Addition/Subtraction 64 38 64 38 16 3
Multiplication 329 265 329 265 12 6
Squaring 190 45 190 45 4 5
Inversion 46,560 14,611 397 117 - -

program memory is a synthesized lookup table stored as Read-Only Memory
(ROM). In fact, the area requirements of this lookup table is proportional to the
number of lines-of-code (LOC) stored within the program memory. The central
processing unit (CPU) is capable of the most basic arithmetic operations such as
addition/subtraction, logic operations (AND, OR, XOR), and shift operations.

As target technology, we selected a 130nm low-leakage CMOS technology by
UMC. This technology needs fewer power compared to larger 180 nm and 350 nm
technologies and has a lower power leakage than smaller (e.g. 90 nm) technolo-
gies. The standard-cell library has been provided by Faraday Technology. The
RAM-macro blocks have been generated using the Standard Memory Compiler
FSA0A Memaker 200901.1.1 by the Faraday Technology Corporation [9]. For
synthesis we used the Cadence RTL compiler [6] Version v08.10. For power-
simulations we used Cadence First Encounter Version v08.10.

5.1 Finite-Field Arithmetic

The finite-field algorithms have been implemented as described in Section 4.1. All
algorithms (except the algorithms for modular inverses) have been unrolled and
optimized for our custom microcontroller instruction set (Assembler language).
All results are summarized in Table 1.

It shows that our processor performs the binary-field addition about 40.6 %
faster than the prime-field addition (the same holds for modular subtraction).
Binary-field multiplication is 19.5 % faster than its prime-field counterpart be-
cause of the extra reduction logic provided to take advantage of the Mersenne-
like irreducible polynomial. However, it shows that even when multi-precision
arithmetic is used, the biggest advantage of binary-field operations is within the
squaring operation. Its runtime is 4.2 times faster than the prime-field squar-
ing operation. Finally, the two very distinct inversion techniques, discussed in
Section 4.1, result in very different runtime and LOC results. The binary-field
inversion implementation is 3.19 times faster and needs only 29.5 % LOC. It
reuses the squaring and multiplication methods and subsequently only works for
a single irreducible polynomial. The prime-field inversion, in contrast, works for
any prime. The main reason for the higher code size are actually the additional
utility functions (addition, subtraction, multiplication with 2, division by 2) that
had to be implemented.
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Table 2. Comparison of prime field vs. binary-field ECC implementations

Algorithm Q = k×P ECDSA Sign ECDSA Verify
Fp192 F2191 Fp192 F2191 Fp192 F2191

Integer multiplier required – required required required required
Carry-less multiplier – required – required – required

Cycles 1,312,616 399,635 1,393,523 494,983 1,417,422 892,124

RAM entries 100 90 112 103 174 162
Program entries 1,207 699 1,662 1,689 1,519 1,875
Constants 61 60 100 129 100 141

Area requirements [GE]

CPU 4,041 3,653 4,049 4,393 4,066 4,422
Program memory 4,494 2,683 7,203 7,432 7,589 8,031
Data memory 3,040 2,963 3,390 3,412 4,088 4,160

Total area 11,579 9,301 14,644 15,293 15,747 16,618

Power consumption @ 1MHz [µW]

CPU 20.40 19.99 18.36 18.48 17.93 20.38
Program memory 8.95 4.01 7.89 8.22 8.89 8.16
Data memory 10.59 8.92 11.91 10.86 11.80 12.52

Total power 41.37 34.78 39.54 39.47 40.55 43.12

Energy consumption [µJ]

Energy 54.30 13.90 55.10 19.53 57.48 38.47

5.2 Elliptic-Curve Operations

Table 2 compares the absolute values and Table 3 compares the relative differ-
ences of the implemented prime-field and binary-field ECC implementations.
The relative differences shown in Table 3 have been calculated using the For-

mula Param(F2m )
Param(Fp) − 1. In the following, we separately consider point multiplica-

tion as well as signature generation and verification of the higher-level protocol
of ECDSA.

In view of point multiplication, it shows that the binary-field based imple-
mentation is 3.28 times faster than the prime-field based opponent. The area
requirement is 19.7 % better and the power consumption is 15.9 % lower for the
binary-field processor. This results in an energy consumption which is 3.91 times
lower than the calculation over prime fields. Note that the area difference mostly
comes from the size of the program memory, the used multiplier within the CPU

Table 3. Relative difference between Fp and F2m based implementations

Algorithm Q = k×P ECDSA Sign ECDSA Verify

Runtime −69.6 % −64.5 % −37.1 %
Area −19.7 % +4.4 % +5.5 %
Power −15.9 % ±0.0 % +6.3 %
Energy −74.4 % −64.6 % −33.1 %
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Table 4. Comparison of different ECC implementation with related work

ECC Area Cycles Powera Energy VLSI
Curve [GE] [kCycles] µW µJ technology

Auer 2009 [2] Fp192 24,750 1,031 613.65 632.67 AMS C35
Fürbass 2007 [10] Fp192 23,656 500 1,692.11 846.06 AMS C35
Wolkerstorfer 2005 [36] Fp192 23,818 678 500.00 340.00 350nm
This work 2011 Fp192 11,579 1,313 41.37 54.30 UMC L130

Lee 2008 d=4 [24] F2163 15,356 79 37.39 2.95 UMC L130
Lee 2008 d=1 [24] F2163 12,506 276 32.42 8.95 UMC L130

Batinab 2006 d=4 [3] F2163 14,816 95 27.00 2.57 130nm

Batinab 2006 d=1 [3] F2163 13,104 354 27.00 9.56 130nm
Bock 2008 d=8 [5] F2163 16,247 47 148.76 6.99 INF SRF55V01P
Bock 2008 d=1 [5] F2163 10,392 280 54.31 15.21 INF SRF55V01P
Hein 2008 [14] F2163 11,904 296 101.87 30.15 UMC L180
Kumar 2006 [23] F2163 15,094 430 - - AMI C35
Kumar 2006 [23] F2193 17,723 565 - - AMI C35
Wolkerstorfer 2005 [36] F2191 23,818 426 500.00 213.00 350nm
This work 2011 F2191 9,301 399 34.78 13.90 UMC L130

a All reference values were scaled to 1 MHz.
b RAM approximated with 4,890 GE. Power-consumption values do not include RAM.

and the size of the necessary RAM macro. Even note that in both designs, about
50 % of the total power is consumed within the CPU.

5.3 Cryptographic Protocols

For ECDSA, only 455 lines of code (38 %) have to be added to the prime-field
ECC processor to support all operations to sign data. This and the small in-
crease of necessary RAM entries increased the total area requirement by 26.5 %.
The execution time is increased by only 6.2 %. The differences in power and
energy consumption are hardly noticeable. The changes to the binary-field ECC
processor are much more significant. The CPU had to be extended with a small
8-bit integer multiply-accumulate unit, making it capable of prime and binary-
field operations, increasing the area requirements of the CPU by 20 %. Adding
all those algorithms increased the size of the program memory by 177 % and
the total area of the processor by 64 %. Also the power and energy consumption
increased by 13.5 % and 40.5 %. However, the runtime of the binary-field based
ECDSA processor is still 2.82 times faster than the runtime of the prime-field
based ECDSA processor. Even though the area and power consumption are ap-
proximately identical, the binary-field ECDSA processor needs 2.82 times less
energy than the prime-field ECDSA processor.

The ECDSA verification needs one additional point multiplication compared
to the ECDSA-signature generation algorithm which needs only one. Cause of
Shamir’s trick the runtime for the prime-field based algorithms differ by only 2 %.
The area differs by 7.5 % and the power and energy results are almost identical.
The ECDSA-signature verification algorithm over binary fields does not handle
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Table 5. Comparison of our ECDSA implementations with related work

ECC Curve Area Cycles Powera Energy VLSI
[GE] [kCycles] µW µJ technology

Kern 2010 [20] Fp160 18,247 512 860.00 440.32 AMS C35
Hutter 2010 [15] Fp192 19,115 859 1,507.79 1,295.19 AMS C35

Wengerb 2010 [34] Fp192 11,686 1,377 113.86 156.79 UMC L180

This workb 2011 Fp192 14,644 1,394 39.54 55.10 UMC L130
This work 2011 F2191 15,293 495 39.47 19.53 UMC L130

a All reference values have been scaled to 1 MHz.
b Nearly identical designs were used. The differences in area and power come from the

different technologies and synthesizers used.

the two point multiplications as well. Whereas the area increased by only 8.7 %,
the runtime increased by 80 %. This doubles the required energy needed for an
ECDSA-signature verification compared to an ECDSA-signature generation.

5.4 Comparison with Related Work

Table 4 gives a comparison with related work. All power results have been scaled
to 1 MHz. The first five rows give related work over prime fields. The remaining
rows contain related work over binary fields. Our Fp processor is 51 % smaller
than the best related design by Wolkerstorfer [36]. In terms of cycles this proces-
sor is above average. Only the energy requirement by Öztürk [30] design is lower,
but their design is not based on NIST P-192. The area results of the math pro-
cessor are 10.4 % smaller than the smallest related implementation. Our speed,
power, and energy results are larger than many other designs, but it should be
noted that those designs have an advantage cause of the smaller elliptic curve
used.

Table 5 summarizes related work regarding low-resource ECDSA-hardware
implementations. In terms of power and energy consumption, we outperform
existing solutions. The area requirements are lower than the work of Kern [20]
and Hutter [15] but are higher than the work of Wenger [34].

6 Conclusion

In this paper, we compared the performance of two distinct ECC-hardware
implementations that are based on prime-field (NIST P-192) and binary-field
(ANSI c2tnb191v1) arithmetic. The comparison of the finite-field algorithms
showed us the clear runtime advantage of the squaring (4.2 times) and addi-
tion (1.7 times) operations within the binary-extension field. When doing point
multiplications, the F2m based processor outperforms the Fp based processor by
19.7 % in area, 69.6 % in runtime, 15.9 % in power, and 74.4 % in energy. In addi-
tion to these outcomes, we analyzed the impact of higher-level protocols on the
finite-field processors. The implementation of both digital-signature generation
and verification using ECDSA had led us to interesting findings. It was shown
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that the area and power advantages for the F2m based processor vanish while
it still is 1.5-2.8 times faster and consequently more energy efficient than the
Fp based processor.

These results can be applied to any future design of an ASIC ECC processor
that is integrated in an area, power, or energy constrained device.
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