
Putting Together What Fits Together - GrÆStl

Markus Pelnar1,2, Michael Muehlberghuber1, and Michael Hutter2

1 Integrated Systems Laboratory (IIS), ETH Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland

m.pelnar@student.tugraz.at, mbgh@iis.ee.ethz.ch
2 Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
michael.hutter@iaik.tugraz.at

Abstract. We present GrÆStl, a combined hardware architecture for
the Advanced Encryption Standard (AES) and Grøstl, one of the final
round candidates of the SHA-3 hash competition. GrÆStl has been de-
signed for low-resource devices implementing AES-128 (encryption and
decryption) as well as Grøstl-256 (tweaked version). We applied several
resource-sharing optimizations and based our design on an 8/16-bit data-
path. As a feature, we aim for high flexibility by targeting both ASIC and
FPGA platforms and do not include technology or platform-dependent
components such as RAM macros, DSPs, or Block RAMs. Our ASIC
implementation (fabricated in a 0.18µm CMOS process) needs only
16.5 kGEs and requires 742/1,025 clock cycles for encryption/decryption
and 3,093 clock cycles for hashing one message block. On a Xilinx Spartan-
3 FPGA, our design requires 956 logic slices and 302 logic slices on a
Xilinx Virtex-6. Both stand-alone implementations of AES and Grøstl
outperform existing FPGA solutions regarding low-area design by need-
ing 79 % and 50 % less resources as compared to existing work. GrÆStl
is the first combined AES and Grøstl implementation that has been fab-
ricated as an ASIC.

Keywords: Hardware implementation, AES, Grøstl, ASIC, FPGA, em-
bedded systems, low-resource design.

1 Introduction

Among the most commonly used cryptographic primitives in classical communi-
cation protocols are block ciphers and hash functions. The Advanced Encryption
Standard (AES) [26] is by far the most widespread block cipher since its stan-
dardization in 2001. Grøstl [8] was one of the final round candidates of the SHA-
3 cryptographic hash function competition from which Keccak [1] emerged as
winner. Both AES and Grøstl share several similarities such as a common S-box
or similar diffusion layers which encourage the implementation of a combined
hardware architecture.

In this paper, we describe a hardware architecture—called GrÆStl—that
combines the functionality of AES-128 and Grøstl-256 in one piece of silicon.

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 173–187, 2013.
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-37288-9_12
c© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-37288-9_12


174 M. Pelnar, M. Muehlberghuber, and M. Hutter

Our design aims for high flexibility supporting both Application Specific Inte-
grated Circuit (ASIC) and Field Programmable Gate Array (FPGA) platforms
without using technology dependent components such as Random Access Mem-
ory (RAM) macros, Digital Signal Processors (DSPs), or Block RAMs. We ex-
ploit various optimization techniques to reduce the required area, for example,
by sharing registers and a common datapath. The ASIC version of our design
has been fabricated using the 0.18µm Complementary Metal Oxide Semicon-
ductor (CMOS) process technology from the United Microelectronics Corpora-
tion (UMC) and therefore represents the first tape-out version of a combined
AES/Grøstl architecture in the literature. It requires only 16.5 kGEs in total
and needs 742/1,025 clock cycles for AES encryption/decryption and 3,093 clock
cycles for hashing. The small area requirements and also the low-power con-
sumption of about 20µW at 100 kHz make the design applicable to resource-
constrained devices such as smart cards or contact-less powered devices. We also
compared the results of our stand-alone implementations of AES and Grøstl. It
shows that the implementations outperform existing FPGA solutions in terms
of low-area. They require up to 79 % less resources on a Spartan-3 as compared
to existing implementations.

The remainder of this paper is organized as follows. In Section 2, an overview
about related work on area-constrained AES and Grøstl implementations is
given. Section 3 presents the architecture of GrÆStl and describes the design
starting from the top module down to the implemented (combined) datapath.
In Section 4, we present our results and compare them with related work. Finally,
we summarize our results and draw conclusions in Section 5.

2 Related Work

There exist many papers in the literature that present low-resource hardware
implementations of AES or Grøstl. Since publication of the algorithms, several
optimization techniques have been proposed that reduce the area requirements
for both ASIC and FPGA platforms. One example is the optimized AES S-box
implementation of Canright [3] that has been also used by Feldhofer et al. [6] to
realize a very compact version of AES-128 in 2005. Their implementation requires
3.4 kGEs for both encryption and decryption. Similar results have been reported
by Hämäläinen et al. [11], Kaps et al. [19], and Kim et al. [23] who reported about
4 kGEs in total. At EUROCRYPT 2011, Moradi et al. [24] presented an area-
optimized implementation of (encryption-only) AES which needs about 2.4 kGEs
that marks the lowest level of state-of-the-art AES implementations.

As opposed to AES, there exist only a few publications so far that describe
low-area optimizations for Grøstl on ASIC devices. Tillich et al. [28] have been
the first who presented an implementation requiring 14.6 kGEs. This number
also corresponds well to the area estimations given in the Grøstl specification
from Gauravaram et al. [8] which reported a size of less than 15 kGEs. Further
implementations have been presented by Katashita et al. [21], Guo et al. [10],
and Henzen et al. [12] which require between 34.8 and 72 kGEs.



Putting Together What Fits Together - GrÆStl 175

In view of FPGA platforms, large effort has been made to reduce the com-
plexity by reusing existing hardware components, e.g., Block RAMs and DSPs.
Chodowiec and Gaj [5] presented a low-resource AES-128 implementation on
FPGAs in 2003 and described different optimization techniques. Their imple-
mentation needs 222 slices and 3 Block RAMs on a Spartan-2 supporting both
encryption and decryption. In particular, they made use of Look-Up Tables
(LUTs) to efficiently implement shift registers such that intermediate values can
be easily shifted without generating additional address logic. In the upcoming
years, improvements have been reported by, e.g., Good et al. [9], Chi-Wu et
al. [13], and Bulens et al. [2].

A very compact FPGA implementation of Grøstl has been presented by Jungk
et al. [18,16,17] in 2010, 2011, and 2012. Their design needs 967 slices on a
Spartan-3 FPGA without interface and 328 slices on a Virtex-6 FPGA requiring
no Block RAMs. Sharif et al. [27] reported 1,627 slices (w/o Block RAMs) and
1,141 slices (using 18 Block RAMs) on a Virtex-5. In the same year, Kerckhof
et al. [22] presented an implementation that needs only 343 slices on a Spartan-
6 and 260 slices on a Virtex-6 FPGA (w/o using any Block RAMs or DSPs).
At the final SHA-3 conference, Kaps et al. [20] published a lightweight Grøstl
implementation requiring approx. 560 slices and one Block RAM on a Spartan-3
FPGA.

While there exist several papers that analyze the combination of differ-
ent block ciphers and hash functions (mostly combining MD5 with SHA-1,
e.g., [4,7,15,29]), there exists only one publication that focuses on the combi-
nation of AES and Grøstl on FPGA platforms. Järvinen [14] analyzed various
resource-sharing techniques to reduce the area requirements for an Altera Cy-
clone III. Their smallest design needs 12,387 Logic Cells (LCs) whereas AES
takes an overhead of about 2.5 %, i.e., 300 LCs.

3 Hardware Architecture of GrÆStl

GrÆStl has been designed with the aim for a very compact solution that supports
both AES-128 and Grøstl-256 in one piece of silicon. We targeted a low-resource
design (primarily area and power optimized) and applied different design tech-
niques that are new or already known, e.g., from existing low-area AES imple-
mentations. Low-resource architectures are especially interesting for embedded
systems such as contactless smart cards, sensor nodes, and RFID-based devices
where area and power are stringent requirements for a practical deployment.

Next to the low-resource requirements, we aim for high flexibility so that the
design can be applied on both ASIC and FPGA platforms. We therefore avoid
the use of process-dependent technologies like RAM macros or the use of Block
RAMs or DSPs on FPGA architectures. The disadvantage of these technologies
are that they might not be available in all CMOS libraries and that they have
to be recreated in case of a possible CMOS-process variation. Moreover, in case
of FPGAs, resources such as Block RAMs or DSPs might be already used by
other system components such that the applicability of the design depends on



176 M. Pelnar, M. Muehlberghuber, and M. Hutter

In
p
u
t 

R
eg

is
te

r

I
n
p
u
t 8 8

O
u
tp

u
t 

R
eg

is
te

r

Zero Vector

Initial Vector

8

O
u
t
p
u
t

8

Core

Fig. 1. Architecture of our 8-bit GrÆStl implementation

their availability. In order to avoid those dependencies, we based our design only
on standard cells and generic hardware components which makes it very flexible
and portable to other platforms.

Since Grøstl needs per se more resources than AES, cf. [8], it is advisable
to reuse existing hardware components to keep the overhead for AES as low as
possible. We therefore decided to implement a combined datapath that effectively
shares resources such as the S-box, temporary registers, or the State matrix. We
based the top-module design and also the interface on an 8-bit architecture
because it reduces the area complexity and power consumption of our design
compared to larger datawidths. For the common datapath, we used 16 bits for
Grøstl and only 8 bits for AES. This has two advantages. First, since two S-
boxes are required for Grøstl, one S-box can be used in parallel to the SubBytes
operation of AES to improve the performance of round-key generation. Second,
parts of the computation can be switched off in order to reduce the overall power
consumption.

An overview of the GrÆStl architecture is shown in Fig. 1. The main com-
ponents are a common datapath (denoted as Core unit) that combines most
of the round transformations for AES and Grøstl and two shared 512-bit shift
registers. In order to keep the area requirements low, we decided to calculate
the P and Q permutations of Grøstl sequentially instead of calculating them
in parallel. This reduces the performance of hashing but allows to implement
only one shared permutation instance in hardware. The need of two additional
512-bit shift registers is compensated by the fact that they are needed anyway in
order to store the original message (needed for the second permutation Q), the
result of the first permutation P and intermediate hash values in case of mes-
sages not fitting one block. These shift registers feature an 8-bit I/O through
which large de-/multiplexers can be avoided. In the following, we present the
common datapath and describe the implemented optimization techniques. Af-
terwards, we make use of the shared registers to improve the performance of the
AES round-key generation.

3.1 The Common Datapath

Figure 2 shows the architecture of the common datapath. It has been separated
into four main components according to the round transformations of AES and



Putting Together What Fits Together - GrÆStl 177

16

8

16 64 16
8

8

16

16

8

8

8

8

8

8

State matrix

stage

AddRound−
Constant stage

SubBytes

stage

MixBytes

stage

Key scheduler

M
ix
B
y
te
s
re
g
is
te
r

(6
4
bi
ts
)

S
ta
te

m
a
tr
ix

(5
12

bi
ts
)

Data out

Data in

SubKey
byte

RotWord
output

A
d
d
I
n
it
ia
lK

ey
A
d
d
R
ou

n
d
C
n
st

S
−

B
ox

I
−

/S
−
B
ox M

ix
B
y
te
s

16

16

Fig. 2. Core datapath w/o round-key generation and un-/loading of the State
matrix

Grøstl: a shared State, an AddRoundConstant/AddInitialKey, SubBytes, and
MixBytes unit.

Sharing the State. One of the most obvious ways to share resources between
AES and Grøstl is to share the memory resources for the State. The size of the
State for AES is 128 bits, i.e., a 4 × 4-byte matrix. Grøstl, in contrast, needs
512 bits (for variants returning a message digest of a size up to 256 bits), i.e.,
an 8 × 8-byte matrix. Thus, up to four AES States can fit into one Grøstl State
which allows to integrate up to four AES encryption/decryption units in parallel
to speed up the computation with minimal overhead. The work of Järvinen [14],
for example, reported such an integration with an additional overhead of 13.5 %
for four parallel AES encryptions and only 2.5 % for one AES encryption (neither
of these two architectures contain the key generation). In contrast to our imple-
mentation, Järvinen targeted a high-throughput architecture with a datapath
width of 512 bits.

For the design of GrÆStl, we decided to avoid any parallel computations
to keep the area requirements as low as possible. Thus, we mapped one AES
structure into the Grøstl State as illustrated in Fig. 3, i.e., the data (requiring
the upper left 4 × 4 bytes) and the round key (requiring the lower left 4 × 4
bytes). In addition to these memory locations, we reused four bytes of the upper
right 4 × 4 matrix as temporary registers for the round-key generation, further
on denoted as RotWord shift-register. The round keys are then generated “on-
the-fly” during AES computation.

The common State has been implemented using shift registers. This has sev-
eral advantages. First, they reduce the area requirements on common FPGA
platforms since the Look-Up Table (LUT) in certain logic blocks can be config-
ured as a shift register without using the flip-flops available in each slice as also
noticed by Chodowiec et al. [5]. Second, they are very flexible and can be used for
both ASIC and FPGA designs as opposed to other memory architectures such
as RAM macros or Block RAMs. Third, due to automatic shifts of intermediate



178 M. Pelnar, M. Muehlberghuber, and M. Hutter

RotWordData Key

a7,4 a7,5 a7,6 a7,7

a6,4 a6,5 a6,6 a6,7

a4,4 a4,5 a4,6 a4,7

a3,0 a3,1 a3,2 a3,3

a2,0 a2,1 a2,2 a2,3

a1,0 a1,1 a1,2 a1,3

a0,0 a0,1 a0,2 a0,3

a3,4 a3,5 a3,6 a3,7

a2,4 a2,5 a2,6 a2,7

a1,4 a1,5 a1,6 a1,7

a0,4 a0,5 a0,6 a0,7a0,4 a0,5 a0,6 a0,7

a7,0 a7,1 a7,2 a7,3

a6,0 a6,1 a6,2 a6,3

a4,0 a4,1 a4,2 a4,3

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

8 8 8 8 8
D Q

Clk

En

8 8 8 8 8

In1

In2

Out1

Out2

a5,4 a5,5 a5,6 a5,7a5,0 a5,1 a5,2 a5,3

Fig. 3. Mapping the AES State into the Grøstl State and the construction of a
single State matrix row

values, additional address logic and multiplexer stages can be avoided. Thus, no
ShiftRows or ShiftBytes units are needed because they are implicitly performed
by the applied shift registers.

Each row in the State has been implemented as an 8-byte shift register that
can be split into two 4-byte shift registers with two independent inputs. Figure 3
shows one internal row composed of two 4-byte shift registers. When AES is
performed, only 4-byte shift registers are used, 8-byte shift registers are used
during Grøstl computations. In order to reduce the power consumption during
AES computation, we applied an operand-isolation technique that switches off
unused parts of the matrices, e.g., the lower right 4×4 bytes of the State matrix.
Furthermore, we applied clock gating cells to minimize toggling activity.

Tweaked AddRoundConstant Stage. For Grøstl, the State is modified
through the AddRoundConstant function, which varies with the type of the
required permutation. In case of the P permutation, the first row gets modified
through fixed constants whereas the rest stays untouched. This changes for the
Q permutation, where instead of the first row, the last row gets modified. Ad-
ditionally, the rest of the State bits get flipped, cf. [8]. Note that in contrast to
the Grøstl-0 specification (from the 31th of October 2008), where only a sin-
gle byte gets modified (for both permutations), in the tweaked Grøstl version
(from the 2nd of March 2011, version 2.0.1) multiple bytes get modified. Com-
pared to existing work, which mostly presents solutions for Grøstl-0, e.g., in [28],
we present an implementation that considers the tweaked variant including the
modified round constants and initial vectors.

For AES, the State gets modified through the AddRoundKey function, which
simply adds (XOR-operation) the round key located in the lower left 4×4 bytes
of the State matrix to the data in the upper left 4 × 4 bytes.



Putting Together What Fits Together - GrÆStl 179

Reusing SubBytes for AES Round-Key Generation. The SubBytes trans-
formation in Grøstl can be efficiently combined with the S-box operation of AES,
because both algorithms make use of the same S-box transformation. Minor ef-
fort has to be made in order to provide the inverse S-box transformation required
for AES decryption.

There exist several implementation optimizations for the AES S-box, e.g.,
given in [3], [25], or [30]. Most of the related work transformed the finite-field
operations over GF (28) into a composite of smaller fields, e.g., GF ((24)2). We
implemented the method proposed by Wolkerstorfer et al. [30], where an S-box
is composed of two transformations, namely the calculation of a multiplicative
inverse in the finite field GF (28) and an affine transformation. For AES decryp-
tion, the affine transformation is exchanged with its counterpart and executed
before computing the multiplicative inverse. In order to save some additional
gates, one may replace the S-box implementation by Wolkerstorfer et al. with
the one by Canright [3]. As our Grøstl version is based on a 16-bit wide data-
path, we implemented two S-boxes, one of them providing both transformation
directions. AES is based on an 8-bit datapath, thus we exploited the presence of
an additional S-box in order to improve the performance of the AES round-key
generation as described in the following.

Basically, there exist two possibilities to generate the round keys for AES
encryption and decryption. First, the round keys are pre-computed and stored in
non-volatile memory. Second, the round keys are computed ”on-the-fly”. While
the first option provides fast access to existing round keys, the second option is
cheaper in terms of area requirements since no memory is needed to store the
keys. We therefore decided to implement the second option.

While one S-box is used to perform the SubBytes operation of AES, the
second S-box can be reused to calculate the round keys in parallel. For the
round-key generation, one S-box, XOR operations, and a small LUT is required
that holds the round constants. Figure 6 and Fig. 7 in Appendix A illustrate the
general forward and backward round-key generation.

The forward round-key generation is done as follows. First, during the initial-
ization of the common State, the last four bytes of the master key are loaded into
the RotWord shift-register (located in the upper right 4 × 4 matrix as shown in
Fig. 3). The output of the RotWord shift-register gets substituted by the shared
S-box and modified with the round-dependent constant Rcon before it gets added
to the output of the first row of the key matrix (located in the lower left 4 × 4
matrix as shown in Fig. 3). Afterwards, the result is loaded back into the Rot-
Word shift-register and the first row of the key matrix before both get shifted.
This is done for the first byte of each row of the key matrix in order to obtain
the highest four bytes of the next round key. The following three columns of
the next round key get calculated by applying the same procedure while bypass-
ing the S-box and Rcon modifications. Due to the similarity of the forward and
backward round-key generation, we do not explain the latter in detail.



180 M. Pelnar, M. Muehlberghuber, and M. Hutter

Combined MixColumns and MixBytes. MixColumns and MixBytes have
been combined to a common MixBytes function. It has been implemented such
that it takes the 64-bit output of the MixBytesReg as input, representing either
a column of AES or a column of Grøstl. As for AES one column only has a
size of 32 bits, the remaining 32 bits are not used. For both AES and Grøstl
the matrices, which have to be multiplied with the State, are circulant and
constant. This fact helps in reducing the complexity by implementing from each
of the three matrices only one row. The circulant behavior is gained through the
MixBytesReg, realized as an 8-byte shift register. In the next four clock cycles
after this register has been loaded, always 8 bits for AES respectively 16 bits for
Grøstl are processed and stored in the State matrix. Note that the MixColumns
operation for AES encryption comes for free as it is implicitly computed during
a Grøstl MixBytes operation.

Furthermore, the MixColumns operation for AES decryption takes larger
coefficients than those required for Grøstl. Therefore, additional effort has been
made to provide also the inverse operation of the MixColumns function.

3.2 I/O-Register Sharing

Since two 512-bit registers are required for our Grøstl implementation in order
to hold intermediate values and the original input message during the sequential
execution of permutation P and Q, we can reuse them to improve the perfor-
mance of AES decryption as follows. As soon as an AES encryption or decryption
finishes, we store its master key together with the corresponding last round key
in the output register. If afterwards another decryption takes place, we compare
its master key with the previously stored one. In case the keys match, we reuse
the previously stored last round key instead of the new master key and can
therefore save the time (i.e., 330 clock cycles) for calculating the last round key
required for decryption.

4 Results

We implemented GrÆStl-256 in VHDL and synthesized it for both ASIC and
FPGA platforms. For the ASIC design, we used Mentor Graphics ModelSim
6.5c and Synopsys DesignCompiler 2010.03 for functional simulations (RTL
and post-layout verification) and synthesis. We mapped our architecture onto a
standard-cell library based on the 0.18µm CMOS process by UMC. One single
Gate Equivalent (GE) therefore corresponds to the area of a 2-input NAND
gate, i.e., 9.3744µm2. For FPGA synthesis, we used Xilinx ISE Design Suite
12.1 and applied the parameter set “Area Reduction with Physical Synthesis”.
Furthermore, we removed the reset feature from all shift registers as sub-optimal
reset strategies can prevent the use of device-library components, such as shift
register look-up tables (SRLs) [31].

In order to evaluate the efficiency of GrÆStl compared to separate implemen-
tations, we provide results for stand-alone variants of AES and Grøstl. However,
we have to note that a fair comparison of our stand-alone variants with related



Putting Together What Fits Together - GrÆStl 181

Fig. 4. ASIC area results after synthesis
Component AES Grøstl GrÆStl

[GE] [GE] [GE]

Top Level Glue Logic 50 460 800
Input/Output Reg. - 8,250 8,250
Core 2,550 6,340 7,500

State Matrix 1,100 4,200 4,350
AddRndCnst. - 100 100
SubBytes 330 540 600
MixBytes 490 900 1,100
Core Glue Logic 630 600 1,350

Round-Key Gen. 2,150 - -

Overall 4,750 15,050 16,550

Fig. 5. Chip layout

work is largely infeasible since we targeted a combined version and integrated
optimization techniques that do not affect the single-implementation variants.
Table 4 lists the area occupation for AES, Grøstl, and GrÆStl for a target fre-
quency of 100 MHz. It shows that GrÆStl needs only 16,550 GEs of area not
including an interface. This is about 16 % less than the sum of the two sepa-
rate implementations. Furthermore, it shows that the overhead for AES is only
1.5 kGEs which is smaller than the smallest available stand-alone AES imple-
mentation given in the literature, cf. [6,11].

In view of execution time, our stand-alone version of AES and GrÆStl need
945 clock cycles for encryption. This includes an 8-bit four-phase-handshaking
that requires 203 clock cycles to load/unload the input/output register. Decryp-
tion needs 1,558 clock cycles. Our GrÆStl implementation even reduces the num-
ber of clock cycles by 330 because the round-key generation can be avoided if
the last round key is already maintained in the I/O registers. Hashing of a 512-
bit block takes 3,465 clock cycles (including 404 clock cycles for the interface)
without applying message padding. The number of clock cycles results from the
State matrix design, the datapath width of 8 bits and the required MixBytesReg
through which the datapath is split into halves. In short, this register gets filled
in each cycle with one valid byte related to a certain column of AES or Grøstl.
After finishing loading, the State matrix gets updated through the MixBytes
function. Afterwards the State matrix is shifted by one column and the proce-
dure starts over again.

We taped out our design as an ASIC. For this, we targeted a maximum
clock frequency of 125 MHz. This in combination with clock gating and eight
scanchains required an additional amount of 750 GEs of chip area. A photo of
the fabricated chip, highlighting the floorplan of the three different modules, is
illustrated in Fig. 5. To the best of our knowledge, there is no ASIC design of
Grøstl (or a combination of AES and Grøstl) available so far, which targets a
low-resource implementation and has finally been taped out.



182 M. Pelnar, M. Muehlberghuber, and M. Hutter

Table 1. ASIC comparison of AES-128 (incl. decryption) and Grøstl-256

Source Width Techn. fmax Cycles/Block Power Area
[bits] [µm] [MHz] Enc. Dec. Hash [µW/MHz] [kGE]

Hämäläinen [11] 8 0.13 153 160 n/a - 37 @ 1.2 V 3.91 }
AESFeldhofer [6] 8 0.35 80 1,032 1,165 - 45 @ 1.5 V 3.4

Ours - AES 8 0.18 100 742 1,025 - 130 @ 1.8 V 4.75

Tillich [28] 64 0.35 56 - - 196 2,210 @ 3.3 V 14.6
}

GrøstlOurs - Grøstl 16 0.18 100 - - 3,093 200 @ 1.8 V 15.05

Ours - GrÆStl 8/16 0.18 100 742 1,025 3,093 200 @ 1.8 V 16.55
}

GrÆStl

1 The area for the design, including the decryption has been estimated with
additional 25 % of the original (encryption only) AES design.

Table 1 gives a comparison with related work. While our stand-alone imple-
mentation of AES is about 1 kGE larger than existing work [6,11], only a small
overhead is required for Grøstl to support also AES, i.e., 10 %. Moreover, our
GrÆStl implementation is only slightly larger than the work by Tillich et al. [28]
which can be attributed to the design decisions to support both Grøstl (tweaked
version instead of Grøstl-0) and AES which requires additional area to optimally
merge both algorithms (to keep the overall area as low as possible). Regarding
power consumption, it shows that our design meets most requirements even for a
contactless operation, e.g., for contactless smart cards. However, due to different
fabrication technologies and supply voltages, we cannot fairly compare the given
numbers.

4.1 FPGA Results

We used Xilinx Spartan-3 and Virtex-6 FPGAs to evaluate the performance of
our design on reconfigurable hardware. Table 2 shows the results after place-and-
route and without an interface included. On the Spartan-3, our design needs only
956 slices. On the Virtex-6, 302 slices are needed. The sum of slices required by
the independent Spartan-3 AES/Grøstl implementations is smaller than those
required for the GrÆStl design. This is due to the structure of the State matrix
of the inner 8/16-bit datapath. For the Grøstl design, this State matrix is built
upon eight 8-byte shift registers which perfectly fit the SRL-16 mode (provided
by Xilinx) as such a 8-byte shift register can be achieved within only a single
CLB. For GrÆStl, each row of the State matrix is replaced by two independent
4-byte shift registers since AES operates on a smaller State compared to Grøstl.
Because of the 4-byte shift registers and the control logic required to form a
8-byte shift register, it is not possible for the compiler to fit the two 4-byte
shift registers into one CLB. Particular changes to the design, which target a
certain FPGA device (i.e., a more target-oriented mapping of the shift registers)
may lead to better results for all three designs. However, this would lead to a
platform-dependent architecture what would contradict with one of our main
goals, i.e., to stay platform independent.



Putting Together What Fits Together - GrÆStl 183

Table 2. Post place-and-route results for various Xilinx FPGAs

Spartan-3 Virtex-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 838 896 1,805 455 531 1,046
Number used as logic. 788 743 1,554 419 443 927
Number used as shift registers 48 128 192 24 64 96
Number used as a route-thru 2 25 59 12 24 23

Number of slice registers 48 293 407 169 279 360
Frequency(MHz) 35 40 30 110 115 80

Number of occupied slices 442 488 956 142 202 302

Table 3. FPGA comparison of AES-128 (incl. decryption) and Grøstl-256

Source Width Output Device fmax Cyc./Block Area
[bits] [bits] [MHz] Enc. Dec. Hash [Slices]

Bulens [2] 128 128 Spartan-3 150 12 12 - 2,150
AESOurs - AES 8 128 Spartan-3 35 742 1,0251 - 442

Bulens [2] 128 128 Virtex-5 350 11 11 - 550
Ours - AES 8 128 Virtex-6 110 742 1,0251 - 142

Jungk [16] 64 224/256 Spartan-3 182 - - 160 967
Grøstl

Ours - Grøstl 8/16 256 Spartan-3 40 - - 3,093 488
Kerckh. [22] 64 256 Virtex-6 280 - - 450 260
Ours - Grøstl 8/16 256 Virtex-6 115 - - 3,093 202

Ours - GrÆStl 8/16 256 Spartan-3 30 742 1,0251 3,093 956
}

GrÆStlOurs - GrÆStl 8/16 256 Virtex-6 80 742 1,0251 3,093 302

1 Decryption with stored last round key.

Table 3 shows a comparison with related work. Note that we listed only AES
implementations that require no Block RAMs, DSPs, etc. to allow a fair com-
parison. It shows that our stand-alone AES implementation is the smallest on
the Spartan-3 needing only 442 slices. For the Virtex-6, our design needs only
142 slices. Our Grøstl implementation needs 488 slices on the Spartan-3 and is
therefore about 2 times smaller than the work of Jungk et al. [16] which requires
967 slices. Compared to the work of Kerckhof et al. [22], we need only 202 slices
on the Virtex-6 instead of 260, i.e., a factor of about 1.3.

5 Conclusion

In this paper, we presented GrÆStl—a combined hardware implementation of
AES-128 and Grøstl-256. GrÆStl has been designed for embedded systems and
therefore shares resources as much as possible to lower the area requirements.
We integrated the following optimization techniques: (1) we mapped the AES



184 M. Pelnar, M. Muehlberghuber, and M. Hutter

State into the GrÆStl State matrix to avoid the need of additional memory,
(2) we made use of shift registers to provide high flexibility (for ASICs as well
as FPGAs) and avoid the implementation of ShiftBytes and ShiftRows, (3) we
implemented the tweaked AddRoundConstant function instead of Grøstl-0 as
given in related work, (4) we reused the S-box for AES and Grøstl and reused it
also to increase the performance of AES round-key generation, (5) we combined
MixBytes and MixColumns, and finally (6) we proposed to share the I/O regis-
ters which avoids forward round-key generation during decryption which helps
to reduce 330 clock cycles in addition.

As result, GrÆStl is the first combined hardware implementation fabricated
as ASIC and occupies 16.55 kGEs in total whereas AES needs an overhead of
only 10 %. In particular, on a Spartan-3 FPGA, our stand-alone AES and Grøstl
implementations outperform existing solutions by a factor of 4.8 and 2 in terms
of area. The small area requirements and the low-power consumption of about
20µW at 100 kHz make the design right suitable for low-resource devices such
as contact-less smart cards and Radio Frequency (RF) communication based de-
vices. Besides that, GrÆStl might be also considered to implement a low-resource
authenticated-encryption scheme, since it provides the required cryptographic
primitives in a single architecture.

Acknowledgment. The authors would like to thank the team from the Mi-
croelectronics Design Center of ETH Zurich, namely Beat Muheim and Frank
Gürkaynak, for their constant support during the backend design of the ASIC.
We also thank Martin Schläffer for fruitful discussions. This work has been sup-
ported by the European Commission through the ICT program under contract
ICTSEC- 2009-5-258754 (Tamper Resistant Sensor Node – TAMPRES) and
ICT-2007-216646 (European Network of Excellence in Cryptology – ECRYPT
II).

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission.
Submission to NIST (Round 3) (2011)

2. Bulens, P., Standaert, F.X., Quisquater, J.J., Pellegrin, P., Rouvroy, G.: Imple-
mentation of the AES-128 on Virtex-5 FPGAs. In: Vaudenay, S. (ed.) Progress in
Cryptology – AFRICACRYPT, First International Conference on Cryptology in
Africa, Casablanca, Morocco, June 11-14. LNCS, vol. 5023, pp. 16–26. Springer
(2008)

3. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2005, LNCS, vol. 3659,
chap. 32, pp. 441–455. Springer, Heidelberg (2005)

4. Cao, D., Han, J., yang Zeng, X.: A Reconfigurable and Ultra Low-Cost VLSI
Implementation of SHA-1 and MD5 Functions. In: International Conference on
ASIC Proceeding – ICASIC 2007, 7th International Conference, Guilin, China,
October 25-29, 2007. pp. 862–865. IEEE (October 2007)



Putting Together What Fits Together - GrÆStl 185

5. Chodowiec, P., Gaj, K.: Very Compact FPGA Implementation of the AES Al-
gorithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems – CHES, 5th International Workshop, Cologne, Germany,
September 8-10. LNCS, vol. 2779, pp. 319–333. Springer, Heidelberg (2003)

6. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proceedings - Information Security 152(1), 13–20 (October 2005)

7. Ganesh, T.S., Sudarshan, T.S.B.: ASIC Implementation of a Unified Hardware
Architecture for Non-Key Based Cryptographic Hash Primitives. In: International
Conference on Information Technology: Coding and Computing – ITCC, April 4-6,
2005, Las Vegas, Nevada, USA. vol. 1, pp. 580–585. IEEE Computer Society (April
2005)

8. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – A SHA-3 Candidate. Submission to NIST
(Round 3) (2011)

9. Good, T., Benaissa, M.: AES on FPGA from the Fastest to the Smallest. In: Rao,
J., Sunar, B. (eds.) Cryptographic Hardware and Embedded Systems – CHES,
LNCS, vol. 3659, pp. 427–440. Springer, Heidelberg (2005)

10. Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: Fair and Comprehensive Per-
formance Evaluation of 14 Second Round SHA-3 ASIC Implementations. In: Sec-
ond SHA-3 Candidate Conference, 2010 (2010)

11. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: 9th
EUROMICRO Conference on Digital System Design – DSD. pp. 577–583. IEEE
Computer Society, Washington, DC, USA (2006)

12. Henzen, L., Gendotti, P., Guillet, P., Pargaetzi, E., Zoller, M., Gürkaynak, F.K.:
Developing a Hardware Evaluation Method for SHA-3 Candidates. In: Crypto-
graphic Hardware and Embedded Systems – CHES, 12th International Workshop,
Santa Barbara, USA, August 17-20. Lecture Note in Computer Science, vol. 6225,
pp. 248–263. Springer, Heidelberg, Santa Barbara, CA (2010)

13. Huang, C.W., Chang, C.J., Lin, M.Y., Tai, H.Y.: Compact FPGA implementation
of 32-bits AES algorithm using Block RAM. In: TENCON 2007 IEEE Region 10
Conference. pp. 1–4 (2007)

14. Järvinen, K.: Sharing Resources Between AES and the SHA-3 Second Round Can-
didates Fugue and Groestl. In: Second SHA-3 Candidate Conference (August 2010)

15. Järvinen, K.U., Tommiska, M., Skyttä, J.: A Compact MD5 and SHA-1 Co-
Implementation Utilizing Algorithm Similarities. In: Engineering of Reconfigurable
Systems and Algorithms – ERSA 2005, International Conference, Las Vegas,
Nevada, USA, June 27-30, 2005. pp. 48–54. CSREA Press (2005)

16. Jungk, B., Reith, S.: On FPGA-Based Implementations of the SHA-3 Candidate
Grøstl. In: Reconfigurable Computing and FPGAs (ReConFig), 2010 International
Conference on. pp. 316–321 (December 2010)

17. Jungk, B.: Evaluation Of Compact FPGA Implementations For All SHA-3 Final-
ists. SHA-3 Conference (March 2012)

18. Jungk, B., Apfelbeck, J.: Area-Efficient FPGA Implementations of the SHA-3 Fi-
nalists. In: Athanas, P.M., Becker, J., Cumplido, R. (eds.) ReConFig. pp. 235–241.
IEEE Computer Society (2011)

19. Kaps, J.P., Sunar, B.: Energy comparison of AES and SHA-1 for ubiquitous com-
puting. In: Zhou, X., Sokolsky, O., LuYan, Jung, E.S., Shao, Z., Mu, Y., Lee, D.C.,
Jeong, D.K.Y.S., Xu, C.Z. (eds.) 2nd IFIP International Symposium on Network
Centric Ubiquitous Systems – NCUS, Seoul, Korea, August 1-4. LNCS, vol. 4097,
pp. 372–381. Springer, Heidelberg (2006)



186 M. Pelnar, M. Muehlberghuber, and M. Hutter

20. Kaps, J.P., Vadlamudi, P.Y.S., Gurung, K.K.S.S., Habib, B.: Lightweight Imple-
mentations of SHA-3 Finalists on FPGAs. SHA-3 Conference (March 2012)

21. Katashita, T.: Groestl compact. http://www.rcis.aist.go.jp/special/SASEBO/
(Februar 2010)

22. Kerckhof, S., Durvaux, F., Veyrat-Charvillon, N., Regazzoni, F., de Dormale, G.M.,
Standaert, F.X.: Compact FPGA Implementations of the Five SHA-3 Finalists. In:
Prouff, E. (ed.) CARDIS. LNCS, vol. 7079, pp. 217–233. Springer (2011)

23. Kim, M., Ryou, J., Choi, Y., Jun, S.: Low Power AES Hardware Architecture for
Radio Frequency Identification . In: Yoshiura, H., Sakurai, K., Rannenberg, K.,
Murayama, Y., Kawamura, S. (eds.) First International Workshop on Security –
IWSEC, Kyoto, Japan, October 23-24. LNCS, vol. 4266, pp. 353–363. Springer,
Heidelberg (October 2006)

24. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2011, LNCS, vol. 6632, pp. 69–88. Springer,
Heidelberg (2011)

25. Nikova, S., Rijmen, V., Schläffer, M.: Using Normal Bases for Compact Hardware
Implementations of the AES S-box. In: 6th International Conference Security in
Communication Networks – SCN

26. NIST: Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute
of Standards and Technology (November 2001)

27. Sharif, M.U., Shahid, R., Rogawski, M., Gaj, K.: Use of Embedded FPGA Re-
sources in Implementations of Five Round Three SHA-3 Candidates. In: ECRYPT
II Hash Workshop 2011 (2011)

28. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M.,
Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware Impleme-
nations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl and Skein. In: Auer,
M., Pribyl, W., Söser, P. (eds.) Proceedings of Austrochip 2009, October 7, 2009,
Graz, Austria. pp. 69–74 (2009)

29. Wang, M.Y., Su, C.P., Huang, C.T., Wu, C.W.: An HMAC processor with inte-
grated SHA-1 and MD5 algorithms. In: Imai, M. (ed.) Conference on Asia South
Pacific Design Automation: Electronic Design and Solution Fair – ASP-DAC, Yoko-
hama, Japan, January 27-30. pp. 456–458. IEEE (January 2004)

30. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the
AES SBoxes. In: Preneel, B. (ed.) Topics in Cryptology – CT-RSA, LNCS, vol.
2271, pp. 29–52. Springer, Heidelberg (2002)

31. Xilinx: HDL Coding Practices to Accelerate Design Performance. (May 2012),
http://www.xilinx.com/support/documentation/white_papers/wp231.pdf

http://www.rcis.aist.go.jp/special/SASEBO/
http://www.xilinx.com/support/documentation/white_papers/wp231.pdf


Putting Together What Fits Together - GrÆStl 187

A AES-128 Key Generation

Figure 6 and Fig. 7 illustrate the general forward and backward round-key gen-
eration of AES-128. Each of the round key words is stored in a single column
and updating the keys is done column by column.

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

88 8 8 88 8 8

RotWord

SubWord

Rcon

Fig. 6. Forward round-key generation

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

88 8 88 8 8

RotWord

SubWord

Rcon

Fig. 7. Backward round-key generation


	Introduction
	Related Work
	Hardware Architecture of GrÆStl
	The Common Datapath
	I/O-Register Sharing

	Results
	FPGA Results

	Conclusion
	AES-128 Key Generation

