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Abstract. Computing elliptic-curve scalar multiplication is the most
time consuming operation in any elliptic-curve cryptosystem. In the
last decades, it has been shown that pre-computations of elliptic-curve
points improve the performance of scalar multiplication especially in
cases where the elliptic-curve point P is fixed. In this paper, we present
an improved fixed-base comb method for scalar multiplication. In con-
trast to existing comb methods such as proposed by Lim and Lee or
Tsaur and Chou, we make use of a width-ω non-adjacent form represen-
tation and restrict the number of rows of the comb to be greater or equal
ω. The proposed method shows a significant reduction in the number of
required elliptic-curve point addition operation. The computational com-
plexity is reduced by 33 to 38 % compared to Tsaur and Chou method
even for devices that have limited resources. Furthermore, we propose a
constant-time variation of the method to thwart simple-power analysis
attacks.

Keywords: Elliptic-curve cryptosystem, scalar multiplication, Lim-Lee
method, Tsaur-Chou method, non-adjacent form, width-ω NAF.

1 Introduction

In 1985, N. Koblitz [13] and V. Miller [19] introduced elliptic curves for their use
in cryptography. The difficulty of solving the elliptic curve discrete logarithm
problem is mathematically hard so that Elliptic Curve Cryptography (ECC) can
be efficiently applied in modern cryptosystems. Among the most time consuming
operation of ECC is the scalar multiplication. A secret scalar k is multiplied with
a point P on an elliptic curve E(Fq) resulting in the point Q ∈ E(Fq). Over the
last years, there have been many publications that propose new methods to
efficiently calculate Q = kP , e.g., [5] or [8].

When the elliptic-curve point P is fixed, suggestion to pre-compute some data
that depend only on P was first made by Brickell, Gordon, McCurley, and Wilson
(BGMW) in 1992 [4]. They observed that if the multiplier k is expressed in a
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base b, more time may be saved by adding together powers with like coefficients
first.

Another improvement was proposed by Lim and Lee [16] in 1994. They pro-
posed a more flexible pre-computation technique for speeding up the compu-
tation of exponentiation. Later in 2005, Tsaur and Chou [28] proposed a new
fixed-base comb method by applying a NAF representation of the scalar k and
Sakai and Sakurai [23] method for direct doubling.

In this paper, we propose an efficient method for scalar multiplication by
combining the ideas of Lim-Lee [16] and Tsaur-Chou [28]. Our method makes
use of a fixed-base comb technique and represents the scalar k in a width-ω
NAF representation. Furthermore, we restrict the number of rows of the comb
to be greater or equal ω. As a result, our proposed method provides a significant
reduction in the number of required elliptic-curve point addition operation. In
practice, a speed improvement by 33 to 38 % is achieved.

The rest of this paper is organized as follows. In Section 2, we give an introduc-
tion to elliptic curves and review some of existing scalar-multiplication methods.
In Section 3, we review the methods of Lim-Lee and Tsaur-Chou. In Section 4,
we propose efficient method for speeding up elliptic curve scalar multiplication.
In Section 5, we show that our proposed method can accelerate simultaneous
scalar multiplication. In Section 6, we discuss the resistance against side-channel
attacks. In Section 7, we give results of our method compared with Tsaur and
Chou method. In Section 8 we draw conclusions. Finally, in the appendix, we
give an example to illustrate our method.

2 Preliminaries

This section introduces some elementary background on elliptic curves. We refer
the reader to [5], [9], and [25] for further details.

An elliptic curve E over a finite field Fq of characteristic 6= 2, 3 can be given
by the short Weierstrass equation

E : y2 = x3 + ax + b

where a, b ∈ Fq, for which 4a3 +27b2 6= 0. Elliptic-curve points E(Fq) are defined
to be

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax + b} ∪O

where O is the point at infinity. E(Fq) forms an additively abelian group with
the point at infinity O which serves as the identity element. Adding two points
in E(Fq) is defined by the chord-and-tangent rule.

The most time consuming operation in elliptic curve cryptography is the scalar
multiplication, i.e., Q = kP , where P and Q are points on the curve E and k
is a scalar such that 0 ≤ k < ordE(P ). The Elliptic Curve Discrete Logarithm
Problem (ECDLP) is to find the scalar k given points P and Q.

Since scalar multiplication largely determines the execution time of ECC-
based protocols, it is attractive to provide efficient methods that reduce the
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computational complexity by applying different multiplication techniques. There
are many proposals given in literature which provide improvements for different
kind of scenarios: (1) both the scalar and the base point are unknown, (2) the
scalar is fixed, and (3) the base point is fixed [5,9]. In the following sections, we
will describe generic methods and methods where the base point is fixed. For
methods where the scalar is fixed, addition chains can be used to improve the
performance of scalar multiplication. We refer the reader to [5,9] for more details.

2.1 Generic Methods

One of the most easiest way to perform a scalar multiplication where both the
scalar and the base point are unknown is the binary method (or often referred as
double-and-add). A point doubling operation is performed at every loop iteration
whereas point addition is only performed if the scalar bit value ki is 1, where
i ∈ [0, l−1] denotes the bit index of the scalar k with size l. It therefore achieves
a density of approximately 1/2 which results in a computational complexity
of l

2A + lD, where A and D represent the costs for addition and doubling,
respectively. Note that the binary method does not need any pre-computations
but does not provide resistance against timing [14] or Simple Power Analysis [15]
attacks.

Windowing Techniques. A generalization of the binary method has been
proposed by Brauer [3] in 1939 (also often referred as 2r−ary or window method).
The idea is to slice the representation of the scalar k into pieces and to process
ω digits at a time. For this, k is represented in a base 2ω where ω > 1. The
method scans the bits either from left-to-right or from right-to-left (like for the
binary method). Note that windowing techniques require extra memory but they
significantly improve the speed of scalar multiplication.

An efficient variant of the 2r−ary method is the sliding window method intro-
duced by Thurber [27] in 1973. By pre-computing iP for i ∈ {1, 3, 5, 7, ..., 2ω−1},
one can move a width-ω window across the scalar k and search for the first non-
zero bit. After finding the bit, the window is placed such that the value of the
window is odd.

Non-Adjacent Form (NAF) Representations. The density of the prior
described methods can be further reduced by using a signed-digit representation.
The advantage of this representation is that the cost of computing the inverse
of elliptic-curve points, e.g., −P , comes almost for free. Booth [1] proposed in
1951 to expand the coefficients in the representation of the scalar k to {0,±1}.
However, the disadvantage of his proposal has been that the representation is
not unique. Thus, Reitwiesner [22] proposed to apply a Non-Adjacent Form
(NAF) representation in 1960. A NAF of a positive integer k is an expression

k =
∑l−1

i=0 ki2
i where ki ∈ {0,±1}, kl−1 6= 0, and no two consecutive digits ki are

nonzero. The length of the NAF is l. It is a canonical representation with the
fewest number of non-zero digits for a given scalar k. The expected number of
non-zero bits in a NAF is l/3 as shown by Morain and Olivos [21]. The runtime
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Algorithm 1 Width-ω NAF method for a positive integer k

Require: Window width w and a positive integer k.
Ensure: Width-ω NAF(k).
1: i = 0.
2: While k > 0 do
3: If k is odd then
4: b ≡ k mod 2ω.
5: If b ≥ 2ω−1 then
6: b = b− 2ω;
7: k = k − b.
8: Else b = 0.
9: ki = b; i = i + 1; k = k/2.

10: Return (ki−1, ki−2, ..., k1, k0).

complexity of a binary NAF method is therefore approximately l
3A + lD (cf. [2]

and [21]).

A generalization of NAF is the width-ω NAF, proposed by Solinas [26] in 2000.
For the width-ω NAF, the scalar k is represented by

k =

l−1∑
i=0

ki2
i (1)

where each nonzero coefficient ki is odd, |ki| < 2ω−1, kl−1 6= 0, and at most
one of any ω consecutive digits is nonzero. Algorithm 1 can be used to obtain
the width-ω NAF of a positive integer k and is denoted by NAFω(k).

In order to perform the scalar multiplication using width-ω NAF, the points
P, 3P, ..., (2ω−1 − 1)P are pre-computed and the scalar multiplication is per-
formed in the evaluation phase as shown in Algorithm 2. The average density
of non-zero bits among all width-ω NAFs is asymptotically 1/(1 + ω) [21]. The
expected runtime of Algorithm 2 is therefore

[1D + [2ω−2 − 1]A] + [
l

ω + 1
A + lD]. (2)

Algorithm 2 Width-ω NAF method for scalar multiplication

Require: Window width-ω, positive integer k and P ∈ E(Fq).
Ensure: Q = kP .
1: Use Algorithm 1 to compute NAFω(k) =

∑l−1
i=0 ki2

i.
2: Compute Pi = iP for all i ∈ {1, 3, 5, 7, ..., 2ω−1 − 1}.
3: Q = O.
4: For i = l − 1 downto 0 do
5: Q = 2Q.
6: If ki 6= 0 then
7: If ki > 0 then Q = Q + Pki .
8: Else Q = Q− Pki .
9: Return (Q).
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Note that most of the described methods above do not per se provide re-
sistance against side-channel attacks [15,18]. The methods have to provide at
least a constant runtime and (even better) a regular structure to resist against
most of these attacks, for example, as provided by the Montgomery powering
ladder [12,20]. There, a point addition and doubling is performed in every loop
iteration achieving a density of 1 (lA + lD).

2.2 Fixed Base-Point Methods

When the base point P is fixed, the efficiency of scalar multiplication can be
improved by pre-computations. The idea is to pre-compute every multiple 2iP
where 0 < i < l. If theoretically all 2iP points are pre-computed, the com-
plexity of scalar multiplication is reduced to only l

2A (without the need of any
doublings).

Similar to generic methods, fixed base-point methods can be mainly separated
into windowing, NAF windowing, and fixed-base comb techniques. One of the
first who proposed a fixed-base windowing technique has been due to Brickell,
Gordon, McCurley, and Wilson (BGMW) [4]. They proposed to split the scalar
k into d slices, where d = dl/ωe. The runtime complexity is then reduced to
(2ω+d−3)A. Similarly, a NAF windowing technique can be applied which further

reduces the complexity to approximately ( 2ω+1

3 +d−2)A, where d = d(l+1)/ωe.
In the following, we will introduce two common techniques proposed by Lim

and Lee [16] as well as Tsaur and Chou [28]. Both methods are based on a fixed-
base comb technique. Afterwards, we will present our proposed method that
makes use of both ideas to reduce the complexity.

3 Fixed-Base Comb Methods

The main idea of fixed-base comb methods is to represent the scalar k as a binary
matrix of h rows and v columns. The matrix is then processed column-wise from
right-to-left or from left-to-right.

3.1 Lim and Lee Method

In 1994, Lim and Lee [16] introduced a comb technique that divides the scalar k
into h blocks Ki from right-to-left, for 0 ≤ i ≤ h− 1, of equal size a = d lhe (we
pad zeros if necessary). Then, subdivide each block Ki from up-to-down into v
subblocks ki,j of equal size b = dav e, where 0 ≤ j ≤ v − 1. We can rewrite the h
blocks of k in terms of a binary matrix, i.e.,

k =



K0

...
Ki

...
Kh−1

 =



k0,v−1 · · · k0,j · · · k0,0

...
...

...
ki,v−1 · · · ki,j · · · ki,0

...
...

...
kh−1,v−1 · · · kh−1,j · · · kh−1,0

 =

v−1∑
j=0

h−1∑
i=0

ki,j2
jb2ia.
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Let P0 = P and Pi = 2aPi−1 = 2iaP for 0 < i < h. Then, we can rewrite kP
as

kP =

v−1∑
j=0

h−1∑
i=0

ki,j2
jb2iaP

=

v−1∑
j=0

h−1∑
i=0

ki,j2
jbPi. (3)

Since Ki is of size a, we can let Ki = ei,a−1...ei,1ei,0 be the binary representa-
tion of Ki for all 0 ≤ i < h, and hence ki,j = ei,jb+b−1...ei,jb+1ei,jb is the binary
representation of ki,j , therefore

kP =

b−1∑
t=0

2t(

v−1∑
j=0

h−1∑
i=0

ei,jb+t2
jbPi). (4)

Suppose that the following values are pre-computed and stored for all 1 ≤ s < 2h

and 1 ≤ j ≤ v − 1,

G[0][s] = eh−1Ph−1 + eh−2Ph−2 + ... + e0P0,

G[j][s] = 2b(G[j − 1][s]) = 2jbG[0][s],

where the index s is equal to the decimal value of eh−1...e1e0. Therefore, we
can rewrite kP as follows

kP =

b−1∑
t=0

2t(

v−1∑
j=0

G[j][Ij,t]) (5)

where Ij,t is the decimal value of eh−1,jb+t...e0,jb+t.

Now we can use the left-to-right binary method to compute kP using these
pre-computed values. The number of elliptic-curve operations in the worst case
is a + b − 2, and since Ij,t is of size h, we may assume that the probability
of Ij,t being zero is 1

2h and Ij,t occurs a times, thus the expected number of

elliptic-curve operations is reduced to (1− 1
2h )a + b− 2.

3.2 Tsaur and Chou Method

In 2005, Tsaur and Chou [28] proposed a new fixed-base comb method by ap-
plying a NAF representation of the scalar k. Furthermore, they divided k into
h × v blocks from up-to-down and then from right-to-left. Moreover, they used
a special doubling operation proposed by Sakai and Sakurai [23] which increases
the performance in addition.



348 N. A. F. Mohamed, M. H. A. Hashim, and M. Hutter

Let k be an l-bit scalar represented in NAF. First, we divide k from up-to-
down into a blocks of equal size h = d lae. Thus we can write k as follows

k = ca−1ca−2...c1c0 =

a−1∑
l=0

cl2
lh, (6)

Then, from right-to-left we divide the h×a blocks into h× v blocks, each of size
b = dav e.

Let P0 = P and Pj = 2hbPj−1 = 2jhbP for 0 < j < v. Therefore, we can
rewrite kP as follows

kP = ca−1ca−2...c1c0P =

a−1∑
l=0

cl2
lhP =

b−1∑
t=0

2th(

v−1∑
j=0

cjb+t2
jhbP ), (7)

where cjb+t = eh−1,jb+t...e1,jb+te0,jb+t is the NAF representation. Suppose

that the following values are pre-computed and stored for all 1 ≤ s ≤
∑dh2 e

i=1 2h−2i+1

and 0 ≤ j ≤ v − 1

G[0][s] = eh−12h−1P + eh−22h−2P + ... + e0P,

G[j][s] = 2hb(G[j − 1][i]) = 2jhbG[0][s],

where the index s is equal to the decimal value of eh−1...e1e0. Therefore, we
can rewrite kP as follows

kP =

b−1∑
t=0

2th(

v−1∑
j=0

G[j][Ij,t]), (8)

where Ij,t is the decimal number of eh−1,jb+t...e1,jb+te0,jb+t.

We know that NAF is always sparse, hence the probability of Ij,t being zero
is 1

2h and Ij,t occurs a times, thus the number of elliptic-curve operations in

the worst case is (1 − 1
2h )a + b − 2. And the expected number of elliptic-curve

operations required is (1− ( 2
3 )h)a + b− 2 on average.

Direct doubling method. When the multiplier k is a power of 2, Sakai and
Sakurai [23] introduced an efficient method to compute kP = 2rP (r ≥ 1) on
elliptic curves over Fp. Given a point P = (x1, y1) ∈ Fp, their method compute
2rP directly. Algorithm 3 from [23] illustrates their method.

In Table 1, we give a comparison of required numbers of multiplication (M),
squaring (S), and inversion (I) required to performed the scalar multiplication
k = 2rP between direct doubling method and separate r doubling.
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Algorithm 3 Sakai-Sakurai method for direct doubling

Require: A positive integer r such that k = 2r and P ∈ E(Fq).
Ensure: k = 2rP
1: A1 = x1, B1 = 3x2

1 + a and C1 = −y1.
2: For i = 2 to r.
3: Ai = B2

i−1 − 8Ai−1C
2
i−1.

4: Bi = 3A2
i + 16i−1a(

∏i−1
j=1 Cj)

4.

5: Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1).

6: Compute Dr = 12ArC
2
r −B2

r .

7: Compute x2r =
B2

r−8ArC
2
r

(2r
∏r

i=1 Ci)2
.

8: Compute y2r =
8C4

r−BrDr

(2r
∏r

i=1 Ci)3
.

9: Return x2r and y2r .

Table 1. Complexity Comparison

Method S M I

Direct Doubling 4r + 1 4r + 1 1
Separate r Doubling 2r 2r r

4 Our Proposed Method

We propose a new method for elliptic-curve scalar multiplication based on the
methods of Lim-Lee [16] and Tsaur-Chou [28]. In our method, the scalar k is
represented in width-ω NAF. Furthermore, it is divided into ω × v blocks from
up-to-down and then from right-to-left as in the method of Tsaur-Chou. In order
to illustrate our method, let k be represented in width-ω NAF with size l. First,
we divide k into a = d l

ω e blocks of equal size ω (we pad the last block with aω− l
zeros if necessary), therefore, we can write k as follows

k = Ka−1Ka−2...K1K0 =

a−1∑
d=0

Kd2dω, (9)

where 0 ≤ d < a.
Then, each block Kd is a column of ω bits (K0 represents the first ω bits, K1

the second ω bits, ... , and Ka−1 the last ω bits), i.e.,

k =
[
Ka−1...Kd...K0

]
=



ka−1,(a−1)ω · · · kd,dω · · · k0,0

...
...

...
ka−1,(a−1)ω+i · · · kd,dω+i · · · k0,i

...
...

...
ka−1,(a−1)ω+(ω−1) · · · kd,dω+(ω−1) · · · k0,ω−1

 .

Note that, for each element kd,dω+i in the matrix the first subscript d indicates
the column, whereas the second subscript dω + i indicates the exact bit index
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from width-ω NAF(k). To simplify the notation in the following we write kd,dω+i

as kd,i.
From right-to-left we divide the ω × a blocks into ω × v blocks, each of size

b = dav e, i.e.,

k =
[
Ka−1...Ka−b · · · Kjb+b−1...Kjb · · · Kb−1...K0

]

=



ka−1,0...ka−b,0 · · · kjb+b−1,0...kjb,0 · · · kb−1,0...k0,0

...
...

...
ka−1,i...ka−b,i · · · kjb+b−1,i...kjb,i · · · kb−1,i...k0,i

...
...

...
ka−1,ω−1...ka−b,ω−1 · · · kjb+b−1,ω−1...kjb,ω−1 · · · kb−1,ω−1...k0,ω−1

 .

kP = Ka−1Ka−2...K1K0P =

v−1∑
j=0

b−1∑
t=0

(Kjb+t2
tω)2jbωP =

b−1∑
t=0

2tω
v−1∑
j=0

Kjb+t2
jbωP,

where Kjb+t = kjb+t,ω−1...kjb+t,0 is in width-ω NAF representation. The maxi-
mum value of Kjb+t is (2ω−1 − 1)2ω−1.

Suppose that the following values are all pre-computed and stored for all
s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and d ∈ {1, 3, ..., 2w−1 − 1}

G[0][sd] = eω−12ω−1P + eω−22ω−2P + ... + e0P = sdP,

G[j][sd] = 2ωb(G[j − 1][sd])

= 2jωbG[0][sd] = 2jωbsdP,

where the index sd is equal to the decimal value of (eω−1...e1e0). Therefore,
we can rewrite kP as follows

kP =

b−1∑
t=0

2tω(

v−1∑
j=0

G[j][Ij,t]) (10)

where Ij,t is the decimal value of kjb+t,ω−1...kjb+t,0. Algorithm 4 can be used
to compute kP using the proposed method.

From [21], we know that the average density of non-zero digits among all
width-ω NAF of length l is approximately 1/(ω + 1), therefore, we can assume
that the probability of Ij,t being zero on average is (ω/(ω + 1))ω, hence the
average cost of our proposed method is

(1− (
ω

ω + 1
)ω)a + b− 2. (11)

On the other hand, the density of non-zero digits among all width-ω NAF of
length l in the worst case is 1/ω, therefore, we can assume that the probability
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Algorithm 4 Proposed width-ω NAF method for scalar multiplication

Require: Positive integers ω, v, k = (kl−1, ..., k1, k0)NAFω and P ∈ E(Fq).
Ensure: Q = kP .
1: a = d l

ω
e and b = da

v
e.

2: Compute G[0][sd] and G[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and
d ∈ {1, 3, 5, ..., 2w−1 − 1}.

3: Q = O.
4: For t = b− 1 downto 0 do
5: If ω = 1 then
6: Q = 2Q.
7: Else
8: Use Algorithm 3 to compute Q = 2ωQ.
9: For j = v − 1 downto 0 do

10: Ij,t = (kjb+t,ω−1...kjb+t,0)NAFω .
11: If Ij,t > 0 then
12: Q = Q + G[j][Ij,t].
13: Else if Ij,t < 0
14: Q = Q−G[j][−Ij,t].
15: Return (Q).

of Ij,t being zero is at most ((ω−1)/ω)ω, hence the cost of our proposed method
in the worst case is

(1− (
ω − 1

ω
)ω)a + b− 2. (12)

5 Simultaneous Scalar Multiplication

In elliptic curve cryptosystems, like in ECDSA, we need to perform the compu-
tation of multiple scalar multiplication, i.e., the computation of kP + rQ, where
P,Q ∈ E(Fq) are two elliptic-curve points and k, r are two large integers such
that, 0 ≤ k < ordE(P ) and 0 ≤ r < ordE(Q). The direct way is to perform
two single scalar multiplications kP, rQ and then one point addition, but, since
scalar multiplication is the most time consuming operation in ECC, it is ad-
visable to perform two scalar multiplications simultaneously. There are many
proposals given in literature to perform multiple scalar multiplications, we refer
the reader to [5,9] for further details.

Our proposed method in Section 4 can be used to accelerate the computation
of simultaneous scalar multiplication. In order to illustrate that, assume that we
want to compute kP + rQ, let k and r be represented in width-ω NAF be l-bit
multipliers, then k and r can be represented as follows

k = Ka−1...K0 =

a−1∑
d=0

Kd2dω and r = Ra−1...R0 =

a−1∑
d=0

Rd2dω. (13)
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Let P0 = P,Q0 = Q,Pj = 2ωbPj−1 = 2jωbP , and Qj = 2ωbQj−1 = 2jωbQ for
0 < j < v. Therefore, as in Section 4 we can write kP and rQ as follows

kP =

b−1∑
t=0

2tω
v−1∑
j=0

Kjb+t2
jbωP and rQ =

b−1∑
t=0

2tω
v−1∑
j=0

Rjb+t2
jbωQ, (14)

where Kjb+t = kjb+t,ω−1...kjb+t,0 and Rjb+t = rjb+t,ω−1...rjb+t,0 are in width-
ω NAF representations.

Therefore we can write kP + rQ as follows

kP + rQ =

b−1∑
t=0

2tω
v−1∑
j=0

(Kjb+t2
jbωP + Rjb+t2

jbωQ), (15)

Suppose that the following values are pre-computed and stored for all s ∈
{1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and d ∈ {1, 3, ..., 2w−1 − 1}

Gp[0][sd] = eω−12ω−1P + eω−22ω−2P + ... + e0P = sdP,

Gp[j][sd] = 2ωb(Gp[j − 1][sd])

= 2jωbGp[0][sd] = 2jωbsdP

Gq[0][sd] = eω−12ω−1Q + eω−22ω−2Q + ... + e0Q = sdQ,

Gq[j][sd] = 2ωb(Gq[j − 1][sd])

= 2jωbGq[0][sd] = 2jωbsdQ,

where the index sd is equal to the decimal value of (eω−1...e1e0). Therefore,
we can rewrite kP + rQ as follows

kP + rQ =

b−1∑
t=0

2tω
v−1∑
j=0

(Gp[j][Mj,t] + Gq[j][Nj,t]), (16)

where Mj,t is the decimal value of kjb+t,ω−1...kjb+t,0 (0 ≤ t < b), and Nj,t is
the decimal value of rjb+t,ω−1...rjb+t,0 (0 ≤ t < b). Algorithm 5 can be used to
compute kP using the proposed method.

The expected runtime of Algorithm 5 is

2(1− (
ω

ω + 1
)ω)a + b− 2. (17)

6 Resistance to Side Channel Attacks

The method of Lim-Lee, Tsaur-Chou, and our proposed method are per se not
resistant to side-channel attacks. Side-Channel Analysis (SCA) attacks have been
first introduced by Kocher et al. [14,15,18] in 1996. By monitoring physical char-
acteristics of a given implementation, e.g., the power consumption or the timing
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Algorithm 5 Proposed width-ω NAF method for multiple scalar multiplication

Require: Positive integers ω, v, P,Q ∈ E(Fq), k = (kl−1, ..., k1, k0)NAFω ,
r = (rl−1, ..., r1, r0)NAFω .

Ensure: kP + rQ.
1: a = d l

ω
e and b = da

v
e.

2: Compute Gp[0][sd] and Gp[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1
and d ∈ {1, 3, 5, ..., 2w−1 − 1}.

3: Compute Gq[0][sd] and Gq[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1
and d ∈ {1, 3, 5, ..., 2w−1 − 1}.

4: R = O.
5: For t = b− 1 downto 0 do
6: If ω = 1 then
7: R = 2R.
8: Else
9: Use Algorithm 3 to compute R = 2ωR.

10: For j = v − 1 downto 0 do
11: Mj,t = (kjb+t,ω−1...kjb+t,0)NAFω .
12: If Mj,t > 0 then
13: R = R + Gp[j][Mj,t].
14: Else if Mj,t < 0
15: R = R−Gp[j][−Mj,t].
16: For j = v − 1 downto 0 do
17: Nj,t = (rjb+t,ω−1...rjb+t,0)NAFω .
18: If Nj,t > 0 then
19: R = R + Gq[j][Nj,t].
20: Else if Nj,t < 0
21: R = R−Gq[j][−Nj,t].
22: Return (R).

behavior, an attacker is able to extract secret information such as the ephemeral
key or private key in asymmetric-key cryptography. One simple countermeasure
to prevent an attacker from being able to recover the bit values of the scalar
k by timing attacks and Simple Power Analysis (SPA) [14], is to execute the
same code independently of the value of the scalar k, i.e., to make the algorithm
have constant runtime. By having a look at the given fixed-base comb methods
of Lim-Lee, Tsaur-Chou, and our proposed method, it shows that the scalar is
leaking by implementations because the runtime of the algorithms depends on
the number of non-zero digits of the secret scalar, cf. [24]. Therefore, one can
(regularly) add the point at infinity O when Ij,t is equal to zero and even add O
to the pre-computed values. In this case, a point addition is executed in every
loop iteration and a constant runtime is obtained with complexity of a+b−2. A
more sophisticated approach is to guarantee that all values of Ij,t are non-zero,
as for example proposed by Hedabou et al. [10,11] or Feng et al. [7]. Another
solution would be to use highly regular (exponent-recoding) techniques such as
proposed by Joye and Tunstall [17]. In order to provide resistance against Dif-
ferential Power Analysis (DPA), we also recommend to include randomization
techniques as proposed by Coron [6].
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Table 2. Number of non-zero columns for different block sizes h of Tsaur-Chou
and our proposed method for a 160-bit scalar multiplication.

h Tsaur-Chou Tsaur-Chou Proposed Proposed
worst average worst average

2 61 45 61 45
3 48 38 38 32
4 39 33 29 25
5 32 29 23 20
6 27 25 18 17
7 23 22 16 14
8 21 21 14 13
9 18 18 12 12
10 17 17 12 11
11 15 15 10 10
12 14 14 10 9
13 13 13 9 9
14 12 12 8 8
15 11 11 8 7

7 Discussion and Results

In Table 3, we give a runtime-complexity comparison of Tsaur-Chou and our pro-
posed method. We compare the runtime in terms of worst-runtime cost, average-
runtime cost, and memory-storage cost. By having a look at the table, one can
notice that when h = ω = 2, our proposed method and Tsaur-Chou method
are identical. When h = ω = 3, the worst cost of our proposed method is equal
to the average cost of Tsaur-Chou method. Furthermore, when h = ω > 3, the
worst cost of our proposed method is less than the average cost of Tsaur-Chou
method. For fixed values of h and v, the term b− 2 is fixed for both methods for
fixed key-bit size of the scalar in average cost and worst cost.

In Table 2 and Figure 1, we analyze the number of non-zero columns for Tsaur-
Chou and our proposed method. Values are given for different block sizes h and
a 160-bit scalar multiplication. For our method and in order to simplify the com-
parison, we have chosen h = ω. It shows that our method performs best in both
the average-cost and the worst-cost scenario. In particular, by evaluating the
performance for all possible block sizes 2 ≤ h ≤ 15, we obtain an improvement
by 33 to 38 % (for the worst and average case).

For a fixed value of h, we noticed that the number of pre-computations (stor-
age cost) is increased in our proposed method. In devices with limited resources
(memory), in most cases we found a suitable choice of h, the window size ω and

Table 3. Runtime complexity of Tsaur-Chou and our proposed method.

Method Worst cost Average cost Storage cost

Tsaur-Chou [28] (1− ( 1
2
)h)a + b− 2 (1− ( 2

3
)h)a + b− 2

∑dh
2
e

i=1 2h−2i+1v

Proposed (1− (ω−1
ω

)ω)a + b− 2 (1− ( ω
ω+1

)ω)a + b− 2 ω2ω−2v
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Fig. 1. Comparison of Tsaur-Chou [28] and our proposed method for a 160-bit
scalar multiplication.

v, which makes our method best. In order to illustrate this, we assume that the
scalar has a bit size of 160 bits. First, we will fix the window size ω to be equal h
and then, depending on the available memory, we choose h and v. For example,
if storage is available for 5 elements and if we apply the Tsaur-Chou method, we
have two choices: (1) h = 2 and v = 2 (the cost3 is 84), or (2) h = 3 and v = 1
(the cost is 90). Now, using our proposed method, we have only one choice, i.e.,
h = 2 and v = 2 (the cost is 84). This coincides with what we previously noted.

If storage is available for 18 elements and if we use the Tsaur-Chou method,
one can choose between three choices: (1) h = 2 and v = 9 (the cost is 52), (2)
h = 3 and v = 3 (the cost is 49), or (3) h = 4 and v = 1 (the cost is 72). For our
proposed method, there are only two choices, i.e., (1) h = 2 and v = 9 (the cost
is 52) or (2) h = 3 and v = 3 (the cost is 48). Thus, we will choose h = 3 and
v = 3 which has a minimum cost of 48. In Table 4, we give the suitable choices
of h and v when the available storage vary from 2 to 50 elements.

8 Conclusion

In this paper, we proposed an efficient method for scalar multiplication by com-
bining the ideas of Lim-Lee [16] and Tsaur-Chou [28]. Our proposed method
makes a significant reduction in terms of number of elliptic-curve point addi-
tion operations. By comparing our method with previous work, it shows that
when h = ω = 2 our proposed method and Tsaur-Chou method are identical,
when h = ω = 3 the worst cost of our proposed method is equal to the average

3 The cost is measured in terms of number of elliptic-curve point addition operations.
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Table 4. Runtime complexity of Tsaur-Chou and our proposed method for
different available storage elements (2-50) and suitable choices of h and v for
160-bit key size.

Available Tsaur-Chou Proposed
storage method method
elements h v costs AUSa h v costs AUSa

2-3 2 1 124 2 2 1 124 2
4-5 2 2 84 4 2 2 84 4
6-7 2 3 70 6 2 3 70 6
8-9 2 4 64 8 2 4 64 8
10-11 2 5 60 10 2 5 60 10
12-13 2 6 57 12 2 6 57 12

3 2 57 12
14 2 7 55 14 2 7 55 14
15 3 3 54 15 2 7 55 14
16-17 2 8 54 16 2 8 54 16
18-19 2 9 52 18 3 3 48 18
20-23 3 4 50 20 3 3 48 18
24 3 4 50 20 3 4 44 24
25-29 3 5 47 25 3 4 44 24
30-34 3 6 45 30 3 5 41 30
35 3 7 44 35 3 5 41 30
36-39 3 7 44 35 3 6 39 36
40-41 4 4 42 40 3 6 39 36
42-47 4 4 42 40 3 7 38 42
45 3 9 42 45
48-49 4 4 42 40 3 8 37 48
50 4 5 40 50 3 8 37 48

a The term AUS is referred to the number of elements actually used to store.

cost of Tsaur-Chou method, and when h = ω > 3 the worst cost of our proposed
method is less than the average cost of Tsaur-Chou method.

Also we showed that our proposed method can be used for speeding up simul-
taneous scalar multiplication of elliptic curves which is interesting, for example,
in many digital signature verification algorithms.

For pre-computations, if storage space is disregarded, our proposed method
is the best choice and we can define h ≥ ω, otherwise ω = h. There is always
a suitable choice for h and v which make our method best. In Table 4, we gave
the suitable choices of h and v when the available storage vary from 2 to 50
elements.
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A Example

In order to illustrate our method, we select at random a positive integer k =
1065142573068 and choose ω = 3. First, we represent k in width-3 NAF,

k = (0100001̄000000000001̄001̄001001̄00300000000300).

Then, we divide from up-to-down to a = d 41
3 e = 14 blocks of size 3, such that

k =

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1̄ 0 0 0 1̄ 1̄ 1 1̄ 3 0 0 3

 . (18)

Then, from right-to-left we divide the 3 × 14 blocks to 3 × 7 blocks, each of
size b = d 14

7 e = 2, such that

k =

00 00 00 00 00 00 00
10 00 00 00 00 00 00
00 1̄0 00 1̄1̄ 11̄ 30 03

 . (19)

Next, we compute and store the following values. For pre-computed values
G[0][sd], where s ∈ {1, 2, 4} and d ∈ {1, 3}:

G[0][1] = P,G[0][2] = 2P,G[0][4] = 4P,G[0][3] = 3P,G[0][6] = 6P,G[0][12] = 12P.

For pre-computed values G[j][sd], where s ∈ {1, 2, 4}, d ∈ {1, 3} and 0 ≤ j ≤ 6:

G[j][1] = 26jP,G[j][2] = 26j(2P ), G[j][4] = 26j(4P ),

G[j][3] = 26j(3P ), G[j][6] = 26j(6P ), G[j][12] = 26j(12P ).
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Next, compute Ij,t = (e2,2j+te1,2j+te0,2j+t)2 for all 0 ≤ t ≤ 1 and 0 ≤ j ≤ 6 as
follows:

I0,0 = (e2,0e1,0e0,0)NAF3
= (300)NAF3

= 12,

I1,0 = (e2,2e1,2e0,2)NAF3
= 0,

I2,0 = (e2,4e1,4e0,4)NAF3
= (1̄00)NAF3

= −4,

I3,0 = (e2,6e1,6e0,6)NAF3
= (1̄00)NAF3

= −4,

I4,0 = (e2,8e1,8e0,8)NAF3
= 0,

I5,0 = (e2,10e1,10e0,10)NAF3
= 0,

I6,0 = (e2,12e1,12e0,12)NAF3
= 0,

I0,1 = (e2,1e1,1e0,1)NAF3
= 0,

I1,1 = (e2,3e1,3e0,3)NAF3
= (300)NAF3

= 12,

I2,1 = (e2,5e1,5e0,5)NAF3
= (100)NAF3

= 4,

I3,1 = (e2,7e1,7e0,7)NAF3
= (1̄00)NAF3

= −4,

I4,1 = (e2,9e1,9e0,9)NAF3
= 0,

I5,1 = (e2,11e1,11e0,11)NAF3
= (1̄00)NAF3

= −4,

I6,1 = (e2,13e1,13e0,13)NAF3
= (010)NAF3

= 2.

Finally, we can compute kP by using above values as follows:

kP = G[0][12] + G[1][0]−G[2][4]−G[3][4] + G[4][0] + G[5][0] + G[6][0] +

23(G[0][0] + G[1][12] + G[2][4]−G[3][4] + G[4][0]−G[5][4] + G[6][2]).
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